Jasper Hoffmann
PhD Candidate
University of Freiburg
Jasper Hoffmann obtained his bachelor’s degree in mathematics in 2016 and his master’s degree in computer science in 2020 at the University of Freiburg. His master thesis was about the interference of function approximation in temporal differencing methods (reinforcement learning). From there he worked as a research assistant at the Computer Vision group Freiburg on neural network compression and out-of-distribution robustness. From there he started his PhD in June 2021 at the Neurorobotics Lab in Freiburg. He is especially interested in combining Model Predictive Control and Reinforcement Learning.
Project description
Classical planning methods can effectively control a single car by leveraging models of the car physics but have difficulties with the uncertainty and interaction complexity of multi-agent human driving required in fully autonomous driving. Thus, this PhD project is about extending optimal control methods with deep reinforcement learning to tackle these challenges. Important steps during the project are finding the right algorithmic framework and training method as well as successfully doing the transfer from simulation to the real system. Possible research directions could include offline reinforcement learning, planning on learned latent space models, or using differentiable optimization layers.
Zhang, Yuan; Hoffman, Jasper; Boedecker, Joschka
UDUC: An Uncertainty-driven Approach for Learning-based Robust Control Working paper
2024.
@workingpaper{zhang2024uduc,
title = {UDUC: An Uncertainty-driven Approach for Learning-based Robust Control},
author = {Yuan Zhang and Jasper Hoffman and Joschka Boedecker},
url = {arXiv preprint arXiv:2405.02598},
year = {2024},
date = {2024-05-09},
urldate = {2024-05-09},
keywords = {},
pubstate = {published},
tppubtype = {workingpaper}
}
Ghezzi, Andrea; Hoffman, Jasper; Frey, Jonathan; Boedecker, Joschka; Diehl, Moritz
Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its Gauss-Newton Approximation Proceedings Article Forthcoming
In: 2023 Conference on Decision and Control (CDC), Forthcoming.
@inproceedings{Ghezzi2023b,
title = {Imitation Learning from Nonlinear MPC via the Exact Q-Loss and its Gauss-Newton Approximation},
author = {Andrea Ghezzi and Jasper Hoffman and Jonathan Frey and Joschka Boedecker and Moritz Diehl},
doi = {https://doi.org/10.48550/arXiv.2304.01782},
year = {2023},
date = {2023-08-17},
booktitle = {2023 Conference on Decision and Control (CDC)},
abstract = {This work presents a novel loss function for learning nonlinear Model Predictive Control policies via Imitation Learning. Standard approaches to Imitation Learning neglect information about the expert and generally adopt a loss function based on the distance between expert and learned controls. In this work, we present a loss based on the Q-function directly embedding the performance objectives and constraint satisfaction of the associated Optimal Control Problem (OCP). However, training a Neural Network with the Q-loss requires solving the associated OCP for each new sample. To alleviate the computational burden, we derive a second Q-loss based on the Gauss-Newton approximation of the OCP resulting in a faster training time. We validate our losses against Behavioral Cloning, the standard approach to Imitation Learning, on the control of a nonlinear system with constraints. The final results show that the Q-function-based losses significantly reduce the amount of constraint violations while achieving comparable or better closed-loop costs.},
keywords = {},
pubstate = {forthcoming},
tppubtype = {inproceedings}
}
Reiter, Rudolf; Hoffman, Jasper; Boedecker, Joschka; Diehl, Moritz
A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing Proceedings Article
In: 2023 European Control Conference (ECC), pp. 1-8, IEEE, Bucharest, Romania, 2023, ISBN: 978-3-907144-08-4.
@inproceedings{Reiter2023Hierarchical,
title = {A Hierarchical Approach for Strategic Motion Planning in Autonomous Racing},
author = {Rudolf Reiter and Jasper Hoffman and Joschka Boedecker and Moritz Diehl},
doi = {10.23919/ECC57647.2023.10178143},
isbn = {978-3-907144-08-4},
year = {2023},
date = {2023-07-17},
urldate = {2023-07-17},
booktitle = {2023 European Control Conference (ECC)},
pages = {1-8},
publisher = {IEEE},
address = {Bucharest, Romania},
abstract = {We present an approach for safe trajectory planning, where a strategic task related to autonomous racing is learned sample efficiently within a simulation environment. A high-level policy, represented as a neural network, outputs a reward specification that is used within the function of a parametric nonlinear model predictive controller. By including constraints and vehicle kinematics in the nonlinear program, we can guarantee safe and feasible trajectories related to the used model. Compared to classical reinforcement learning, our approach restricts the exploration to safe trajectories, starts with an excellent prior performance and yields complete trajectories that can be passed to a tracking lowest-level controller. We do not address the lowest-level controller in this work and assume perfect tracking of feasible trajectories. We show the superior performance of our algorithm on simulated racing tasks that include high-level decision-making. The vehicle learns to efficiently overtake slower vehicles and avoids getting overtaken by blocking faster ones.},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}