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Take-home messages

bothersome inconsistencies lead to new ideas

useful ideas lead to algorithms

the `1-norm heuristic is (unreasonably) effective
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The classical approach views
system as input-output map

systeminput output

the system is a signal processor

accepts input and produces output signal

intuition: the input causes the output
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The input-output map view of the system
is deficient: it ignores the initial condition

example: mass driven by external force
I input ↔ force
I output ↔ position
I ??? ↔ position and velocity at start (initial condition)

input-output maps assume zero initial condition

how to account for nonzero initial condition?
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Taking into account the initial condition
leads to the state-space approach

systeminput output

initial condition

paradigm shift from "classical" to "modern"

classical: scalar transfer function

modern: multivariable state-space
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The modern state-space paradigm brought
new theory, problems, and methods

state-space theory
I manifests the "finite memory" structure of the system
I brought the concepts of controllability and observability
I deals seamlessly with time-varying and MIMO systems

new problems / solution methods
I linear quadratic optimal control (LQ control)
I optimal state estimation (the Kalman filter)
I balanced model reduction

amenable for numerical computations
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A case in point: optimal filtering
(signal from noise separation)

Wiener filter (1942)
I transfer functions approach
I assumes stationarity
I no practical real-time method

Kalman filter (1960)
I state-space approach
I non-stationary processes
I recursive real-time solution
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There are other awkward things
with the input/output thinking

modeling from first principles leads to relations

the input/output partitioning is not unique

interconnection of systems is variables sharing
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First principles modeling leads to relations

natural phenomena rarely operate as signal processors

the variables of interest satisfy relations, not functions

example: planetary orbits
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More basic example: Ohmic resistor
voltage and current satisfy relation

to-be-modeled variables: voltage V and current I

Ohm’s law:
I V = RI, with R the resistance
I I = CV , with C := 1/R the conductance

Q: how to fit the limit cases
I open circuit — R = ∞, C = 0
I short circuit — R = 0, C = ∞

neatly in a unified framework?

A: V , I satisfy (linear) relation
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The behavioral approach was born from a
critical revision of the input/output thinking

simple idea: the system is set of trajectories
I variables not partitioned into inputs and outputs
I the system is separated from its representations

the input/output approach is a special case

relevant for the emerging data-driven methods
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The behavior is all that matters

"The operations allowed to bring
model equations in a more convenient
form are exactly those that do not
change the behavior. Dynamic mod-
eling and system identification aim at
coming up with a specification of the
behavior. Control comes down to re-
stricting the behavior."

Jan C. Willems (1939–2013)

J. C. Willems, “The behavioral approach to open and interconnected systems: Modeling
by tearing, zooming, and linking,” Control Systems Magazine, vol. 27, pp. 46–99, 2007.
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Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don’t change the solution set

(for linear systems, the "elementary operations")

the solution set is all that matters
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Classical definition of linear system
S : u 7→ y is linear ⇐⇒ S is linear function

for all u,v and α,β ∈ R,

S : αu + βv 7→ αS(u) + βS(v)
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The classical definition is deficient

(silently) assumes
I zero initial condition
I controllability

doesn’t apply to autonomous systems

relaxing the assumptions requires state-space
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Behavioral definition of linear system
B is linear ⇐⇒ B is subspace

for all w ,v ∈B and α,β ∈ R

αw + βv ∈B

fixes the issues with
I nonzero initial condition
I autonomous systems
I controllable systems
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Summary: behavioral approach

detach the system from its representations
I define properties and problems in terms of the behavior
I lead to new, more general, definitions and problems
I avoid inconsistencies of the classical approach

separate problem from solution methods
I different representations lead to different methods
I show links among different methods
I lead to new solutions

naturally suited for the "data-driven paradigm"
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Paradigms shifts

1940–1960 classical SISO transfer function

1960–1980 modern MIMO state-space

1980–2000 behavioral the system as a set

2000–now data-driven using directly the data
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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The new "data-driven" paradigm obtains
desired solution directly from given data

given
data

model

desired
solution

model

identifi
ca

tio
n

model-based
design

data-driven design
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Data-driven does not mean model-free

data-driven problems do assume model

however, specific representation is not fixed

the methods we review are non-parametric
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A dynamical system B is a set of signals
w ∈B ↔ ”w is trajectory of B”

↔ ”B is exact model for w”

B is linear system :⇐⇒ B is subspace

B is time-invariant :⇐⇒ σB = B

(σw)(t) := w(t + 1) — shift operator

σB :=
{

σw | w ∈B
}

"good definition should formalize sensible intuition"
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The set of linear time-invariant systems L
has structure characterized by set of integers

the dimension of B ∈L is determined by

m(B) — number of inputs

n(B) — order (= minimal state dimension)

l(B) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561–580), 1986
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B1 less complex than B2 ⇐⇒ B1 ⊂B2

in the LTI case, complexity↔ dimension

complexity: (# inputs, order, lag)

c(B) :=
(
m(B),n(B), l(B)

)
Lc — bounded complexity LTI model class
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Data-driven representation (infinite horizon)

data: exact infinite trajectory wd of B ∈L

define B̂ := span{wd,σwd,σ
2wd, . . .}

identifiability condition: B = B̂
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Data-driven representation (finite horizon)

restriction of w and B to finite interval [1,L]

w |L :=
(
w(1), . . . ,w(L)

)
, B|L := {w |L | w ∈B }

for wd =
(
wd(1), . . . ,wd(T )

)
and 1≤ L≤ T

HL(wd) :=
[

(σ0wd)|L (σ1wd)|L · · · (σT−Lwd)|L
]

define B̂|L := imageHL(wd)
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Conditions for informativity of the data
B|L = imageHL(wd) if and only if

rankHL(wd) = Lm(B) + n(B) (GPE)

I. Markovsky and F. Dörfler, Identifiability in the Behavioral Setting, 2020

sufficient conditions (input design perspective):
1. wd =

[ud
yd

]
2. B controllable
3. HL+n(B)(ud) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325–329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: "data" trajectory wd ∈B|T
partially specified trajectory w |Igiven

(w |Igiven selects the elements of w , specified by Igiven)

aim: minimize over ŵ ‖w |Igiven− ŵ |Igiven‖
subject to ŵ ∈B|L

ŵ = HL(wd)
(
HL(wd)|Igiven

)+w |Igiven (SOL)
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Special cases

simulation
I given data: initial condition and input
I to-be-found: output (exact interpolation)

smoothing
I given data: noisy trajectory
I to-be-found: `2-optimal approximation

tracking control
I given data: to-be-tracked trajectory
I to-be-found: `2-optimal approximation
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Generalizations

multiple data trajectories w1
d , . . . ,w

N
d

B = image
[
HL(w1

d ) · · · HL(wN
d )
]

wd not exact / noisy
maximum-likelihood estimation
 Hankel structured low-rank approximation/completion
nuclear norm and `1-norm relaxations
 nonparametric, convex optimization problems

nonlinear systems
results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . . .
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Summary: data-driven signal processing

data-driven representation
leads to general, simple, practical methods

interpolation/approximation of trajectories
simulation, filtering and control are special cases
assumes only LTI dynamics; no hyper parameters

dealing with noise and nonlinearities
nonlinear optimization
convex relaxations
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The data wd being exact vs inexact / "noisy"

wd exact and satisfying (GPE)
I "system theory" problems
I imageHL(wd) is nonparametric finite-horizon model
I data-driven solution = model-based solution

wd inexact, due to noise and/or nonlinearities
I naive approach: apply the solution (SOL) for exact data
I rigorous: assume noise model ML estimation problem
I heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wd = wd + w̃d

I wd — true data, wd ∈B|T , B ∈L q
c

I w̃d — zero mean, white, Gaussian measurement noise

ML problem: given wd, c, and w |Igiven

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd,B̂
‖wd− ŵd‖

subject to ŵd ∈ B̂|T and B̂ ∈L q
c

m

minimize
g

‖w |Igiven−HL(ŵ∗d)|Igiveng‖

subject to ŵ∗d = arg minŵd
‖wd− ŵd‖

subject to rankH`+1(ŵd)≤ (`+ 1)m + n
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Solution methods

local optimization
I choose a parametric representation of B̂(θ)
I optimize over ŵ , ŵd, and θ

I depends on the initial guess

convex relaxation based on the nuclear norm

minimize over ŵd and ŵ ‖w |Igiven− ŵ |Igiven‖+‖wd− ŵd‖

+ γ ·
∥∥∥[H∆(ŵd) H∆(ŵ)

]∥∥∥
∗

convex relaxation based on `1-norm (LASSO)

minimize over g ‖w |Igiven−HL(wd)|Igiveng‖+λ‖g‖1
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Empirical validation on real-life datasets

data set name T m p
1 Air passengers data 144 0 1
2 Distillation column 90 5 3
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4–5, 1997
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`1-norm regularization with optimized λ

achieves the best performance

emissing :=
‖w |Imissing− ŵ |Imissing‖

‖w |Imissing‖
100%

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 44.10 3.98
6 Heating system 0.92 1.35 0.36
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Tuning of λ and sparsity of g (datasets 1, 2)
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Tuning of λ and sparsity of g (datasets 3, 4)
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Tuning of λ and sparsity of g (datasets 5, 6)
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Summary: convex relaxations
wd exact system theory
I exact analytical solution
I current work: efficient real-time algorithms

wd inexact nonconvex optimization
I subspace methods
I local optimization
I convex relaxations

empirical validation
I the naive approach works (surprisingly) well
I parametric local optimization is not robust
I `1-norm regularization gives the best results
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Meta conclusions
critical attitude
I ask questions (and search for answers)
I don’t trust authorities, instead rediscover
I new ideas start with bothersome inconsistencies

theory–algorithms synergy
I useful ideas lead to algorithms
I algorithms clarify and refine the ideas
I software makes the theory practically useful

rigor vs intuition
I hard real-life problems rarely admit rigorous solutions
I watch out for hidden / unverifiable assumptions
I the `1-norm heuristic is unreasonably effective
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The goal is to predict free fall trajectory
without knowing the laws of physics

object with mass m, falling in gravitational field
I y — position
I v := ẏ — velocity
I y(0),v(0) — initial condition

task: given initial condition, find the trajectory y

I model-based approach:
1. physics 7→ model
2. model + ini. cond. 7→ y

I data-driven approach: data y1
d , . . . ,y

N
d + ini. cond. 7→ y
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Modeling from first principles leads to
affine time-invariant state-space model

second law of Newton + the law of gravity

mÿ = m
[

0
9.81

]
+ f , where y(0) = yini and ẏ(0) = vini

I 9.81 — gravitational constant
I f =−γv — force due to friction in the air

state x := (y1, ẏ1,y2, ẏ2,x5), where x5 =−9.81

initial state xini := (yini,1,vini,1,yini,2,vini,2,−9.81)

5 / 29



Modeling from first principles leads to
affine time-invariant state-space model

ẋ =


0 1
0 −γ/m

0 1
0 −γ/m 1

0

x , x(0) =


yini,1

vini,1

yini,2

vini,2

−9.81


y =

[
1 0 0 0 0
0 0 1 0 0

]
x

data: N, T -samples long discretized trajectories
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Simulation setup and data

write a function fall that simulates free fall
y = fall(y0, v0, t, m, gamma)

simulate N=10, T=100-samples long trajectories
m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
y{i} = fall(rand(2,1), rand(2,1), t,gamma,m);

end

and to-be-predicted trajectory
y_new = fall(rand(2,1), rand(2,1), t,gamma,m);
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Data-driven free fall prediction method

data "informativity" condition:

rank
[
y1

d · · · yN
d

]
︸ ︷︷ ︸

D

= 5

algorithm for data-driven prediction:

1. solve

y1
d (1) · · · yN

d (1)
y1

d (2) · · · yN
d (2)

y1
d (3) · · · yN

d (3)

g =

y(1)
y(2)
y(3)


︸ ︷︷ ︸
ini. cond.

2. define y := Dg
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Verify that the data-driven prediction "works"

check the data "informativity" condition
[rank(D) rank([vec(y_new') D])] % -> [ 5 5 ]

implement the data-driven computation method

verify the computed solution
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Summary: prediction of free fall trajectory

first principles modeling
I use the second law of Newton and the law of gravity
I in particular, the Earth’s gravitational constant is used
I lead to an autonomous affine time-invariant system

data-driven methods
I bypass the knowledge of the physical laws
I automatically infer and use them
I no hyper-parameters to tune
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Outline

Pedagogical example: Free fall prediction
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My interest in dynamic measurement
started from a textbook problem

"A thermometer reading 21◦C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15◦C;
after two minutes it reads 11◦C. What is the out-
side temperature?"

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:
I 1st order dynamics
I 3 noise-free samples
I batch solution

generalizations:
I n ≥ 1 order dynamics
I T ≥ 3 noisy (vector) samples
I recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental
temperature ū

heat transfer−−−−−−−−−→ thermometer’s
reading y

measurement process: Newton’s law of cooling

y = a
(
ū−y

)
heat transfer coefficient a > 0
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Scale: second order dynamical system

ū = M
m

kd

|
|

|
|

|

y(t)

| | | | | | | | | | | | | | | |

(M + m)
d
d t

y + dy + ky = gū
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The measurement process dynamics
depends on the to-be-measured mass
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured
variable u

measurement process−−−−−−−−−−−−−−−→ measured
variable y

assumption 1: measured variable is constant u(t) = ū

assumption 2: the sensor is stable LTI system

assumption 3: sensor’s DC-gain = 1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

yd︸︷︷︸
measured

data

= y︸︷︷︸
true

value

+ e︸︷︷︸
measurement

noise

y︸︷︷︸
true

value

= ū︸︷︷︸
steady-state

value

+ y0︸︷︷︸
transient
response

assumption 4: e is a zero mean, white, Gaussian noise
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using a state space representation of the sensor

x(t + 1) = Ax(t), x(0) = x0

y0(t) = cx(t)

we obtain
yd(1)

yd(2)
...

yd(T )


︸ ︷︷ ︸

yd

=


1
1
...

1


︸︷︷︸

1T

ū +


c

cA
...

cAT−1


︸ ︷︷ ︸

OT

x0 +


e(1)

e(2)
...

e(T )


︸ ︷︷ ︸

e
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Maximum-likelihood model-based estimator

solve approximately

[
1T OT

][ û
x̂0

]
≈ yd

standard least-squares problem

minimize over ŷ , û, x̂0 ‖yd− ŷ‖

subject to
[
1T OT

][ û
x̂0

]
= ŷ

recursive implementation  Kalman filter
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Subspace model-free method

goal: avoid using the model parameters (A, C, OT )

in the noise-free case, due to the LTI assumption,

∆y(t) := y(t)−y(t−1) = y0(t)−y0(t−1)

satisfies the same dynamics as y0, i.e.,

x(t + 1) = Ax(t), x(0) = ∆x
∆y(t) = cx(t)
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Hankel matrix—construction of multiple
"short" trajectories from one "long" trajectory

H (∆y) :=


∆y(1) ∆y(2) · · · ∆y(n)

∆y(2) ∆y(3) · · · ∆y(n+ 1)

∆y(3) ∆y(4) · · · ∆y(n+ 2)
...

...
...

∆y(T −n) ∆y(T −n) · · · ∆y(T −1)



fact: if rankH (∆y) = n, then

imageOT−n = imageH (∆y)
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model-based equation

[
1T OT

][ ū
x̂0

]
= y

data-driven equation

[
1T−n H (∆y)

][ū
`

]
= y |T−n (∗)

subspace method

solve (∗) by (recursive) least squares
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Empirical validation

dashed — true parameter value ū
solid — true output trajectory y0

dotted — naive estimate û = G+y
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e := 1
N ∑

N
i=1‖ū− û(i)‖

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process
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e(t)→ 0 as t → ∞ at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for
I high order dynamics
I noisy vector observations
I online computation

future work / open problems
I numerical efficiency
I real-time uncertainty quantification
I generalization to nonlinear systems
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