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Take-home messages

bothersome inconsistencies lead to new ideas

useful ideas lead to algorithms

the ¢1-norm heuristic is (unreasonably) effective
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Outline

Classical vs behavioral approaches

Data-driven interpolation and approximation

Convex relaxations and empirical validation
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Outline

Classical vs behavioral approaches
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The classical approach views
system as input-output map

input —|

system

— output

the system is a signal processor

accepts input and produces output signal

intuition: the input causes the output
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The input-output map view of the system
is deficient: it ignores the initial condition

example: mass driven by external force

> input <« force
> output < position
» ??? <+ position and velocity at start (initial condition)

input-output maps assume zero initial condition

how to account for nonzero initial condition?
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Taking into account the initial condition
leads to the state-space approach

initial condition

1

input —|

system

— output

paradigm shift from "classical" to "modern"

classical: scalar transfer function

modern: multivariable state-space

7/44



The modern state-space paradigm brought
new theory, problems, and methods

state-space theory

> manifests the "finite memory" structure of the system

> brought the concepts of controllability and observability

» deals seamlessly with time-varying and MIMO systems
new problems / solution methods

» linear quadratic optimal control (LQ control)
» optimal state estimation (the Kalman filter)
» balanced model reduction

amenable for numerical computations
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A case in point: optimal filtering
(signal from noise separation)

Wiener filter (1942)
» transfer functions approach
> assumes stationarity
» no practical real-time method

Kalman filter (1960)

» state-space approach
» non-stationary processes
» recursive real-time solution

9/44



There are other awkward things
with the input/output thinking

modeling from first principles leads to relations
the input/output partitioning is not unique

interconnection of systems is variables sharing
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First principles modeling leads to relations

natural phenomena rarely operate as signal processors

the variables of interest satisfy relations, not functions

example: planetary orbits
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More basic example: Ohmic resistor
voltage and current satisfy relation

to-be-modeled variables: voltage V and current /

Ohm’s law:

» V = RI, with R the resistance
» [=CV, with C:=1/R the conductance

Q: how to fit the limit cases
> open circuit— R=0, C=0
» short circuit — R=0, C=o0
neatly in a unified framework?

A: VI satisfy (linear) relation
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The behavioral approach was born from a
critical revision of the input/output thinking

simple idea: the system is set of trajectories

» variables not partitioned into inputs and outputs
> the system is separated from its representations

the input/output approach is a special case

relevant for the emerging data-driven methods
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The behavior is all that matters

"The operations allowed to bring
model equations in a more convenient
form are exactly those that do not
change the behavior. Dynamic moad-
eling and system identification aim at
coming up with a specification of the
behavior. Control comes down to re-
stricting the behavior."”

Jan C. Willems (1939-2013)

J. C. Willems, “The behavioral approach to open and interconnected systems: Modeling
by tearing, zooming, and linking,” Control Systems Magazine, vol. 27, pp. 46—99, 2007.
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Analogy with solution of systems of equations

Q: what operations are allowed?

A: the ones that don’t change the solution set
(for linear systems, the "elementary operations")

the solution set is all that matters
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Classical definition of linear system
S:u—yislinear «<— Sislinear function

forall u,v and «, 8 € R,

S:au+Pv— aS(u)+pS(v)

ALAN V. ODPENHEIM
ALA LLSK\'
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The classical definition is deficient

(silently) assumes

» zero initial condition
» controllability

doesn’t apply to autonomous systems

relaxing the assumptions requires state-space
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Behavioral definition of linear system
A is linear <— A is subspace

forall w,ve Zand o, € R

Jan Willem Polderman
| Jan C. Willems

aW_I_ﬁ = (@ #| Introduction to

Mathematical
Systems Theory

A Behavioral Approach

fixes the issues with
» nonzero initial condition
» autonomous systems
» controllable systems
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Summary: behavioral approach

detach the system from its representations

> define properties and problems in terms of the behavior
> lead to new, more general, definitions and problems
> avoid inconsistencies of the classical approach

separate problem from solution methods

» different representations lead to different methods
» show links among different methods
> lead to new solutions

naturally suited for the "data-driven paradigm”
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Paradigms shifts

1940-1960

1960-1980

1980-2000

2000—now

classical SISO transfer function
modern MIMO state-space
behavioral the system as a set

data-driven using directly the data
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Outline

Data-driven interpolation and approximation
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The new "data-driven" paradigm obtains
desired solution directly from given data

model %,

, desired
data data-driven design solution
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Data-driven does not mean model-free

data-driven problems do assume model
however, specific representation is not fixed

the methods we review are non-parametric
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A dynamical system Z is a set of signals

weAB <+ "wistrajectory of B"
< "% is exact model for w"

A is linear system :<— % is subspace

A is time-invariant «—= oA =%
(ow)(t) := w(t+ 1) — shift operator

c#:={ow|weRB}

"good definition should formalize sensible intuition”
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The set of linear time-invariant systems .Z
has structure characterized by set of integers

the dimension of #Z € £ is determined by
m(%#) — number of inputs
n(#) — order (= minimal state dimension)

I(#) — lag (= observability index)

J.C. Willems, From time series to linear systems.
Part I, Finite dimensional linear time invariant systems, Automatica, 22(561-580), 1986
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A less complex than %, <— %1 C B>

in the LTI case, complexity <+ dimension

complexity: (# inputs, order, lag)
c(AB) = (m(B),n(AB),1(%))

% — bounded complexity LTI model class

26/44



Data-driven representation (infinite horizon)

data: exact infinite trajectory wy of # € ¥
define % := span{wy,owy,c2Wy, ...}

identifiability condition: % = %
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Data-driven representation (finite horizon)

restriction of w and # to finite interval [1, L]
wip = (w(1),...,w(L)), SBl:={w|. |we ZB}

for wg = (wg(1),...,wg(T))and 1 <L <T

Hi(wa) = [(c"We)lL ("We)l - (o7 Lwar)le

define %, :=image 7 (wy)
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Conditions for informativity of the data
A =image i (wy) if and only if

rank 4 (We) = Lm(2) + (&) (GPE)

I. Markovsky and F. Dorfler, Identifiability in the Behavioral Setting, 2020

sufficient conditions (input design perspective):

1wy =[y;]
2. % controllable
3. A n(#)(Ug) full row rank (PE)

J.C. Willems et al., A note on persistency of excitation
Systems & Control Letters, (54)325-329, 2005

PE — persistency of excitation, GPE — generalized PE
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Generic data-driven problem:
trajectory interpolation/approximation

given: "data" trajectory Wy € BT
partially specified trajectory w| lsiven
(Wl Selects the elements of w, specified by given)
aim: minimize over w [ W]y, .. — W[yl

subjectto we 4|,

W = A (Wat) (W) fyen) (SOL)

W’ Igiven
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Special cases

simulation

» given data: initial condition and input
» to-be-found: output (exact interpolation)

smoothing

> given data: noisy trajectory
» to-be-found: />-optimal approximation

tracking control

> given data: to-be-tracked trajectory
> to-be-found: />-optimal approximation
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Generalizations
multiple data trajectories w ..., w}

# =image | A (wy) - (W)

Wy not exact / noisy

maximume-likelihood estimation

~ Hankel structured low-rank approximation/completion
nuclear norm and ¢{-norm relaxations

~ nonparametric, convex optimization problems

nonlinear systems

results for special classes of nonlinear systems:
Volterra, Wiener-Hammerstein, bilinear, . ..
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Summary: data-driven signal processing

data-driven representation

leads to general, simple, practical methods

interpolation/approximation of trajectories

simulation, filtering and control are special cases
assumes only LTl dynamics; no hyper parameters

dealing with noise and nonlinearities

nonlinear optimization
convex relaxations
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Outline

Convex relaxations and empirical validation
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The data wy being exact vs inexact / "noisy"

wy exact and satisfying (GPE)

> "system theory" problems
> image ./ (wy) is nonparametric finite-horizon model
» data-driven solution = model-based solution

Wy inexact, due to noise and/or nonlinearities

» naive approach: apply the solution (SOL) for exact data
» rigorous: assume noise model ~ ML estimation problem
» heuristics: convex relaxations of the ML estimator
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The maximum-likelihood estimation problem
in the errors-in-variables setup is nonconvex

errors-in-variables setup: wy = wgq + Wy

> Wy — true data, Wy € B|7, B L7
» wy — zero mean, white, Gaussian measurement noise

ML problem: given wy, ¢, and w|;, .

minimize. || W]y, — 7 (50)] 8|
subjectto  wj = arg ming 5 llwa— wy ||

subjectto Wy € Z|1 and % € £
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The ML estimation problem is equivalent to
Hankel structured low-rank approximation

minignize ||W|/gllven - ‘%(W*)hgiveng”

subjectto  wj = arg ming 5 IWa— A
subjectto Wy € %|7 and Z € £

)

minimize | W], ~ ()] I
subjectto wg =argming  [lwy— Wy
subject to rankyﬁﬂ(wd) ({+1)ym+n
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Solution methods

local optimization

» choose a parametric representation of @(9)
» optimize over w, wg, and 6
» depends on the initial guess

convex relaxation based on the nuclear norm

minimize over Wy and w ||w|_ | + || wg — wy|

given

|t @]

W‘/

given

convex relaxation based on /4-norm (LASSO)

minimize over g |[[W|,., — H1(Wa)l e, 91l + 2119111
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Empirical validation on real-life datasets

data set name T mp
1 Airpassengersdata| 144 0 1
2 Distillation column 90 5 38
3 pH process 2001 2 1
4 Hair dryer 1000 1 1
5 Heat flow density 1680 2 1
6 Heating system 801 1 1

G. Box, and G. Jenkins. Time Series Analysis: Forecasting and Control, Holden-Day, 1976

B. De Moor, et al.DAISY: A database for identification of systems. Journal A, 38:4-5, 1997
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¢1-norm regularization with optimized A
achieves the best performance

H W| Imissing - W| Imissing H 0
100%

missing - = ||W|/missing||

data set name naive ML LASSO
1 Air passengers data 3.9 fail 3.3
2 Distillation column 19.24 17.44 9.30
3 pH process 38.38 85.71 12.19
4 Hair dryer 12.35 8.96 7.06
5 Heat flow density 7.16 4410 3.98
6 Heating system 092 1.35 0.36
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Tuning of A and sparsity of g (datasets 1, 2)
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Tuning of A and sparsity of g (datasets 3, 4)
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Tuning of A and sparsity of g (datasets 5, 6)

7 0.15
¥ 3 o1
k| =
¢ E
5 2 0.05
4 0
0 ‘;’ 10 200 400 600 800
i
4
3
2 E
2 ko]
b z
2
1
o i
0 05 1 100 200 300 400

43/44



Summary: convex relaxations
wy exact ~~ system theory

> exact analytical solution
» current work: efficient real-time algorithms
Wy inexact ~» nonconvex optimization

» subspace methods
> local optimization
» convex relaxations

empirical validation

> the naive approach works (surprisingly) well
» parametric local optimization is not robust
> /i-norm regularization gives the best results
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Meta conclusions
critical attitude

» ask questions (and search for answers)
» don’t trust authorities, instead rediscover
> new ideas start with bothersome inconsistencies

theory—algorithms synergy

» useful ideas lead to algorithms
» algorithms clarify and refine the ideas
> software makes the theory practically useful

rigor vs intuition

» hard real-life problems rarely admit rigorous solutions
> watch out for hidden / unverifiable assumptions
» the ¢1-norm heuristic is unreasonably effective
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Outline

Pedagogical example: Free fall prediction

Case study: Dynamic measurement
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Outline

Pedagogical example: Free fall prediction
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The goal is to predict free fall trajectory
without knowing the laws of physics

object with mass m, falling in gravitational field

» y — position
> v :=y — velocity
» y(0), v(0) — initial condition

task: given initial condition, find the trajectory y

1. physics — model

» model-based approach: O
2. model + ini. cond. — y

> data-driven approach: data y},...,y} +ini. cond. — y
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Modeling from first principles leads to
affine time-invariant state-space model

second law of Newton + the law of gravity
my=m[,%,]+f, where y(0)= ypniand y(0) = vini

» 9.81 — gravitational constant
» f=—yv — force due to friction in the air

state x .= (y1 ,Y1 ,yg,yQ,X5), where X5 = —9.81

initial state Xini := (Vini 1> Vini 1+ Yini 25 Vini 2, —9.81)
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Modeling from first principles leads to
affine time-invariant state-space model

0 1 | [ Vini1 ]
0 —y/m Vini, 1
X = 0 1 X, X(O) = Yini72
0 —y/m 1 Vini,2
| 0] | —9.81]]
1 0 0 0 0
y = X
0 0 1 0 0

data: N, T-samples long discretized trajectories
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Simulation setup and data

write a function £al1l that simulates free fall
y = fall(y0, v0, t, m, gamma)

simulate N=10, T=100-samples long trajectories

m = 1; gamma = 0.5;
N = 10; T = 100; t = linspace(0, 1, T);
for i = 1:N,
y{i} = fall(rand(2,1), rand(2,1), t,gamma,m);
end

and to-be-predicted trajectory

y_new = fall(rand(2,1), rand(2,1), t,gamma,m);
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Data-driven free fall prediction method

data "informativity" condition:

rank [y(] yé\’]:S
D

algorithm for data-driven prediction:
ya() - y{() y(1)

1. solve |yl2) - yN@)|g= |y(2)
¥i@3) - yg@) y(3)

——

ini. cond.

2. define y:=Dg
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Verify that the data-driven prediction "works"

check the data "informativity" condition

[rank (D) rank([vec(y_new') D])] & —> [ 5 5 ]

implement the data-driven computation method

verify the computed solution
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Summary: prediction of free fall trajectory

first principles modeling

> use the second law of Newton and the law of gravity
» in particular, the Earth’s gravitational constant is used
> lead to an autonomous affine time-invariant system

data-driven methods

> bypass the knowledge of the physical laws
> automatically infer and use them
» no hyper-parameters to tune
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Outline

Case study: Dynamic measurement
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My interest in dynamic measurement
started from a textbook problem

"A thermometer reading 21°C, which has been
inside a house for a long time, is taken outside.
After one minute the thermometer reads 15°C;
after two minutes it reads 11°C. What is the out-
side temperature?"

According to Newton’s law of cooling, an object of higher
temperature than its environment cools at a rate that is
proportional to the difference in temperature.
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Main idea: predict the steady-state value
from the first few samples of the transient

textbook problem:

> 1st order dynamics
» 3 noise-free samples
> batch solution

generalizations:

> n>1 order dynamics
» T > 3 noisy (vector) samples
> recursive computation

implementation and practical validation
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Thermometer: first order dynamical system

environmental heat transfer thermometer’s
- :
temperature u reading y

measurement process: Newton’s law of cooling
y=a(i-y)

heat transfer coefficient a > 0
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Scale: second order dynamical system

=M
1]

iy(t)

d k

Va4

d _
(M+m)ay+ dy+ky =gu
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The measurement process dynamics
depends on the to-be-measured mass

measured mass

time
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Dynamic measurement: take into account
the dynamical properties of the sensor

to-be-measured measurement process measured
variable u variable y

assumption 1: measured variable is constant u(t) = u
assumption 2: the sensor is stable LTI system

assumption 3: sensor’'s DC-gain =1 (calibrated sensor)
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The data is generated from LTI system
with output noise and constant input

Ya. =y + €
~~

v \,—/
measured true measurement
data value noise
y = u + Yo
~~~ ~ <~
true steady-state transient
value value response

assumption 4: e is a zero mean, white, Gaussian noise

18/29



using a state space representation of the sensor

x(t+1)=Ax(t), x(0) = Xo
Yo(t) = cx(t)

we obtain
Ya(1) 1 c e(1)
yd(2) 1 N CA 6(2)
. - . U+ . X0 T .
ya(T) 1 cAT-1 e(T)

N—— N N—— ——
Yd 17 % e
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Maximume-likelihood model-based estimator

]%}’d

minimize overy, U, Xo |lyq— Yl

|-s

recursive implementation ~» Kalman filter

solve approximately

X))

o

standard least-squares problem

u

subject to [17 ﬁr] <

o
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Subspace model-free method

goal: avoid using the model parameters (A, C, 0'1)

in the noise-free case, due to the LTI assumption,

Ay(t) = y(t)—y(t=1) = yo(t) = yo(t—1)
satisfies the same dynamics as yy, i.e.,

x(t+1)=Ax(1), x(0) = Ax
Ay(t) = cx(t)
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Hankel matrix—construction of multiple
"short" trajectories from one "long" trajectory

[ Ay(1) Ay(2) - Ay(n) ]
Ay(2) Ay(3) -+ Ay(n+1)
A(Dy) = | Ay(@3) Ay(4) -+ Ay(n+2)

AY(T—2) Ay(T—n) - AY(T-1)
fact: if rank.7Z(Ay) = n, then

image or_, =image 7 (Ay)
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model-based equation

[1T ﬁr] ;;] =Yy
data-driven equation
u
[1 T-n %”(Ay)] 4 =YI7-n (%)

subspace method

solve (x) by (recursive) least squares
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Empirical validation

dashed — true parameter value u
solid — true output trajectory y
dotted — naive estimate U= Gty
dashed — model-based Kalman filter
bashed-dotted — data-driven method

estimation error: e:= L YN |o— U]

(for N = 100 Monte-Carlo repetitions)
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Simulated data of dynamic cooling process

06 -
—~
0.4}
o

0.2t

0.8f

0~.

e LT s s A e

e(t) — 0 as t — « at different rates

best is the Kalman filter (maximum likelihood estimator)
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Simulation with time-varying parameter
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Proof of concept prototype
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Results in real-life experiment

10 20 30 40
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Summary

dynamic measurement

steady-state value prediction

the subspace method is applicable for

» high order dynamics
> noisy vector observations
» online computation

future work / open problems

» numerical efficiency
» real-time uncertainty quantification
» generalization to nonlinear systems
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