Data-driven Decision-Making
in Dynamic Environments

Peyman Mohajerin Esfahani

Delft University of Technology

FLO-X Seasonal School
Leuven, Belgium
March 2022



Outline

* Anomaly Detection in Dynamic Environment

* Data-driven Decision-Making




Outline

* Anomaly Detection in Dynamic Environment

- Problem statement
- Model description

- Optimization-based solution




Motivation

Electric power system

v" Uninterrupted energy supply: vital for many critical infrastructures
v' Susceptible to operational errors and external attacks

v' Digitalization makes the system even more vulnerable

Physical power flows SCADA systems

R |l

Physical-Cyber
interaction

\ MeasuremeM

Actions




Motivation

Electric power system

v" Uninterrupted energy supply: vital for many critical infrastructures
v' Susceptible to operational errors and external attacks

v' Digitalization makes the system even more vulnerable

Physical power flows SCADA systems

Physical-Cyber
interaction

\ MeasuremeV

Actions




Motivated by Automatic Generation Control (AGC) Case Study

Area 1

Full model

* 567 dynamic states
* 230 algebraic states
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* voltage + frequency dynamics

* AVR, PSS, governor, AGC
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Design parameters:
(i) Filter

(ii) Threshold
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(SOU.I"CGS of difficulty:

(i) Nolinear dynamics

(ii) Unknown disturbance
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dynamics

Fi-ds

System Dynamics

X: internal states

Discrete-time {X( +1) = AX(t) + Buult) + Bad(t) + By f(t) + Ex (X (t),d(t))
t

Continuous-time
dynamics

t
) = CX(t) + Dyu(t) + Dad(t) + Dy f (1) + Ey (X (¢),d(1))

LX(t) = AX(t) + Byu(t) + Bad(t) + By f(t) + Ex (X (t),d(t))
(t) = CX(t)+ Dyu(t) + Dad(t) + Dy f(t) + By (X (t),d(t))
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Filter Construction

(Model + data \

= Convex Optimization
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Applications

Frequencies

Voltage angles

Filter —>

Security of Power Systems

* Deploy the filter in ABB Network Manager [1] A 1P P
MW

a2 Tenner

* High-fidelity model

— Multivariate attacks, game-theoretic setting |2]

— Hardware in the loop |[3]

[1] PME, Lygeros, IEEE Transactions on Automatic Control, 2016
[2] Pan, Palenski, PME, IEEE Transactions on Power Systems, 2020
[3] Pan, Palenski, PME, /EEE Transactions on Smart Grid, 2021
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* Multiple faults [1]

Tire pressure

Steering angle ===y % -

N - ~- Filter —> T
* From detection to estimation [1] . speed —>! I

e MY

< N

\_ AV ),

[1] C. van der Ploeg, M. Alirezaie, N. van de Wouw, PME, /EEE Transactions on Automatic Control (TAC), minor revision, 2022



%1073 f, estimation (Vx=30-40km-h'1)

pplications

f [rad]

a

1 1 ]
3 3.5 4 4.5 5 55

Ground truth Time [s] -I;_Ioflault ]
—— Wit Pre-Fiter auk sopmathy Road curvature
f_ estimation (Vx=30-40km-h'1) I Fault present

4 I

Tire pressure
Steering angle

Filter =—>» T

|- l‘” |-

B Steering Wheel Cameia

[1] C. van der Ploeg, M. Alirezaie, N. van de Wouw, PME, /EEE Transactions on Automatic Control (TAC), minor revision, 2022



Applications

Water distribution network

» Active detection [1]

e 4
Royal

HaskoningDHV

Sensots
Y

Filter T

residual

[1] G. van Lagen, E. Abraham, PME, IEEE Transactions on Control Systems and Technology (TCST), 2022



ReferenCeS (available at http://www.dcsc.tudelft.nl/“mohajerin/)

Dynamic
anomaly detection

Data-driven
Analytics
Applications:

Power systems
Water distribution

Fast dynamic
programming

* Ploeg, Alirezaie, van de Wouw, and PME, “Multiple Faults Estimation in Dynamical Systems: Tractable Design and
Performance Bounds”, IEEE Transaction on Automatic Control (TAC), minor revision, 2022

* PME and Lygeros, “A Tractable Fault Detection and Isolation Approach for Nonlinear Systems with Probabilistic
Performance”, IEEE Transaction on Automatic Control (TAC), 2016

* PME and Kuhn, “Data-Driven Distributionally Robust Optimization using the Wasserstein Metric: Performance Guarantees

and Tractable Reformulations”, Mathematical Programming, 2018

 PME, Sutter, and Lygeros, “Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex

Programs”, IEEE Transaction on Automatic Control, 2015

* Nguyen, Kuhn, PME, “Distributionally robust inverse covariance estimation: The Wasserstein shrinkage estimator”,

Operations Research (OR), 2021

J

* Pan, Palenski, and PME, “From Static to Dynamic Anomaly Detection with Application to Power System Cyber Security”,
IEEE Transactions on Power Systems, 2021
* G. van Lagen, E. Abraham, and PME, “A Bayesian Approach for Active Fault Isolation with an Application to Leakage
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