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Overview

Model Predictive Control - Examples and Optimization Problems

- Convexity Exploiting Newton-Type Optimization
- Sequential Convex Programming (SCP)
- Generalized Gauss-Newton (GGN)
- + SLP, CGN, SCQP, SQCQP

- Zero-Order Optimization-based lterative Learning Control

- Tutorial Example
- Bounding the Loss of Optimality and Exactness

Mixed Integer Optimal Control

- Problem Statement

+ Three Step Algorithm

- Application to Renewable Energy System in Karlsruhe
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Model Predictive Control (MPC)

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve
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Optimal Control Problem in MPC

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

simulated state trajectory  \. =000 ...

t = fe(lr,u) = T~—0 — &

p Aty
ol T

1l | controls (unknowns / variables)

prediction horizon
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Minimize least squares distance to centerline, respect constraints. Use nonlinear

embedded optimization software acados coupled to ROS, sample at 100 Hz.
[Kloeser et al. 2020]
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MPC needs numerical simulation
e.g. Runge Kutta (RK) methods
(for one sampling interval with piecewise constant control)

T = fo(x,u)

Exact ODE solution N steps of general RK method with S stages

z(0) = s, To =S, Tkt1 =Tk + hZle b vk, j
z(t) = v(t) Tki =Xk + h Zle iV, ]
v(t) = fe(x(t), u), ki = fo(@h,is 1),
for ¢ € [0, At] for 1=1,...,5, k=0,...,N—1
S(s,u) := x(At) S(s,u) :=zn

» a;; and b; are Butcher tableau entries of (potentially implicit) Runge Kutta method

> step length h := At/N; intermediate states =y, Tk i, vi: € R™® with integration step index
ke {0,1,...,N} and RK stage index 7,5 € {1,...,5}

» N nonlinear equation systems with each 25n equations in 25ns unknowns (g i, vk ;)

» solved by Newton's method (or imposed as equality constraints in optimization)
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MPC needs numerical optimization
e.g., using Nonlinear Programming (NLP)

Continuous Time NMPC Problem

z(),u()
s.t. x(0) = o

— /O " Lz, u)dt + B(a(T))

Assume smooth convex L, E, h,r.
Nonlinear f makes problem nonconvex.

Direct methods discretize, then optimize.

E.g. collocation or multiple shooting.

Discretized NMPC Problem (an NLP)

min Zg:_olch(xk, 2k, uk) + E(xn)

T,2,U
s.t. xo= Zo
Lh+1 = @?if(xk,zk,uk)
0= @?clg(xk,zk,uk)
0 > q)h(xk,zk,uk), kIO,...,N—l
0>r(zy)

Again, smooth convex @, E, &, 1.
Variables = (zg,...) and z = (29, ...) and
u = (ug,...,un_1) can be summarized in
vector w € R"w.
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MPC Example: Point-To-Point Motions phb vandenbrouck 2012

Control aims:
e reach end point as fast as possible
» do not violate constraints
* no residual vibrations

|ldea: formulate as embedded optimization problem
in form of Model Predictive Control (MPC)
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Time Optimal MPC of a Crane

T

SENSORS MPC ACTUATOR

*line angle ® cart motor

* cart position

Hardware: xPCTarget.  Software: gpOASES [Ferreau, D., Bock, 2008]
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Time Optimal MPC of a Crane

KU Leuven [Vandenbrouck, Swevers, D.]
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Optimal solutions varying in time (inequalities matter)

Input
: :
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Qo o
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control horizon

Solver gpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]
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ecodwind: MPC for wind turbine control

Industrial partners: IAV, SENVION (now bankrupt)
Aim: minimise fatigue and oscillations, respect constraints.

Nonlinear MPC with about 40 states based on ACADQO/acados with QP solver
HPIPM running on industrial hardware at 1AV.
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Switched NMPC for Electric DC-AC Power Converter

NMPC 48 kHz [Stickan, Frison et al. ACC 2022]
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NMPC aim: follow sinusoidal reference, react
fast to grid failures

3 states, 1 binary input, 1 state dependent
switch due to diodes (in blanking time)

sampling time: 25 microseconds, ARM
A5301.1GHz, horizon N = 2

switching integrator, 3 RK4 and 4 Euler
steps, generated as C code via CasADi

hand tailored SQP real-time iteration, on
track to be applied on industrial photovoltaic
power converter (in DyConPV project).
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Nonlinear Mixed-Integer MPC of a Solar Adsorptive Cooling Machine
[BUrger et al., 2019]

Lar  Loai
.
ecooling l Ties “ _{ Tras “_
Atrium L *
model l Tre ‘ « _{ Ta2 ‘4—
l Trea ‘ « _{ Tran }1—

e

Nonlinear ODE with 39 states, 6
continuous and 2 binary inputs.
Contains combinatorial constraints
such as minimum uptime, minimum
downtime, ...

Predict 24 hours. Aim: minimise
electricity consumption.
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MPC needs System ldentification and State Estimation

Prior to implementing an MPC controller, one needs to address two tasks:
» System ldentification (offline):

use a long sequence of recorded input and output data, (ao,...,an) and (yo,...,yn~), to identify
parameters p using e.g. least squares optimization or subspace identification

> State Estimation (online):

estimate the state si by using the previous control actions (..., ax—2,ax—1) and the past
measurements (..., yx—2,Yr—1) using e.g. Extended Kalman Filter (EKF) or moving horizon
estimation (MHE) (MHE uses a fixed window of past data for fitting)

Learning-based MPC typically refers to an online model adaptation, i.e., to estimating parameters
online (for which MHE is particularly suitable) ("learning a model” = "system identification”)
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Convex-over-linear Structure of MPC Optimization Problems
(MPC itself, but also System Identification and Moving Horizon Estimation)

minimize Z% i(si,ui)) + on(Fn(sn))

w e R™
subject to So = x,
Si+1 = Si(si,us), ©1=0,...,N —1,
H;(si,u;) € s, i1 =20,...,N —1,
Hy(sn) € Qn
variables w = (s, u) with s = (sg,...,sn) and u = (ug,...,un_1)

convexities in ; (e.g. quadratic) and €2; (e.g. polyhedral, ellipsoidal)

nonlinearities in dynamic system S; and constraint functions F;, H;

v v v Vv

often: S; result of time integration (direct multiple shooting)
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Overview

Model Predictive Control - Examples and Optimization Problems

=3 - Convexity Exploiting Newton-Type Optimization
- Sequential Convex Programming (SCP)
- Generalized Gauss-Newton (GGN)
- + SLP, CGN, SCQP, SQCQP

- Zero-Order Optimization-based lterative Learning Control

- Tutorial Example
- Bounding the Loss of Optimality and Exactness

Mixed Integer Optimal Control

- Problem Statement

+ Three Step Algorithm

- Application to Renewable Energy System in Karlsruhe
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Nonlinear optimization with convex substructure

|
minimize  ¢o(Fo(w))
w e R™
subject to Fi(w) € Q; i=1,...,m,
G(w) =0

Assumptions:

» twice continuously differentiable functions G : R"* — R"9 and
F;:R"™ — R"F fort=0,1,...,m.

» outer function ¢g : R"Fo — R convex.

» sets €2, C R"Fi convex fori=1,...,m,
(possibly z € ©; < ¢i(z) < 0 with smooth convex ¢;)

|dea:
exploit convex substructure via iterative convex approximations.
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Why is this class of problems and algorithms interesting ?

» many optimization problems have " convex-over-nonlinear” structure
» standard NLP solvers cannot address all non-smooth convex constraints

> there exist many mature and efficient convex optimization solvers

Some application areas:

» nonlinear least squares for estimation and tracking
[Gauss 1809; Bock 1983; Li and Biegler 1989; Sideris and Bobrow 2004]

» nonlinear matrix inequalities for reduced order controller design
[Fares, Noll, Apkarian 2002; Tran-Dinh et al. 2012]

» ellipsoidal terminal regions in nonlinear model predictive control
[Chen and Allgower 1998; Verschueren 2016]

» robustified inequalities in nonlinear optimization
[Nagy and Braatz 2003; D., Bock, Kostina 2006]

» tube-following optimal control problems [Van Duijkeren 2019]
» non-smooth composite minimization [Apkarian et al. 2008; Lewis and Wright 2016]
» deep neural network training with convex loss functions

[Schraudolph 2002; Martens 2016]
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Class Picture of lterative Convex Approximation Methods

smooth unconstrained NLP i smooth constrained NLP

constrained optimization with non-smooth structure

[Messerer et al., ESAIM 2021]
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Class Picture of lterative Convex Approximation Methods

smooth unconstrained NLP i smooth constrained NLP

constrained optimization with non-smooth structure
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Class Picture of Iterative Convex Approximation Methods

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

[Messerer et al., ESAIM 2021]
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Class Picture of lterative Convex Approximation Methods

smooth unconstrained NLP i smooth constrained NLP

constrained optimization with non-smooth structure

[Messerer et al., ESAIM 2021]
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Sequential Convex Programming (SCP)

> linearize | F}"™ (w; @) := F;(w) + J;(0) (w — w) | with J; (@) := St (w)

» formulate convex subproblems:
e

minimize qﬁo(Féin(w; W))
w e R™

subject to F,L-lin(w;u?) ey, 1=1,...,m,
G"™(w; @) =0

» start at wo with £ =0

» solve convex subproblem at w = wj to obtain next iterate wy41
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Simplest case: smooth unconstrained problems

Unconstrained minimization of " convex over nonlinear’ function
]
minimize  ¢(F(w))

w e R" ~
—:f(w)

Assumptions:
- Inner function F : R™ — R” of class C?
- Outer function ¢ : RY — R of class C? and convex
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Simplest case: smooth unconstrained problems

Unconstrained minimization of " convex over nonlinear’ function
]
minimize  ¢(F(w))

w e R" ~
=:f(w)

Assumptions:
- Inner function F : R™ — R” of class C?
- Outer function ¢ : RY — R of class C? and convex

SCP subproblem becomes

minimize ¢ (Flin (w; U_J))
weR” y (1)

~

=:fscp (w;w)
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Tutorial Example: Pseudo Huber Loss Minimization

Experiments conducted by Florian Messerer

minimize Os(yi — m(x; +w
inimige 3 balys — i +)

J/

~

=:f(w)

Aim: fit n=3 measurements y; to a model m(w + x;) with m(x) = Zx + sin(x) using

the pseudo Huber loss ¢5(x) 1=/ 52+ x° ‘. .
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Cost function and SCP approximation

w=0.3

=
o
1

objective function
=
Ul

O
9))
1

o
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OV
|
N
|
=

0 1 2 3 4 5
decision variable w
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SCP for Least Squares = Gauss-Newton

With quadratic ¢(z) = £||z||3 = 32 ' 2, SCP subproblems become

1F (wr) + J(wi)(w — wi)||3 (2)

L. 1
minimize =
w e R" 2

If rank(J) = n this is uniquely solvable, giving

wipr = wi — (Jwg) T (w)) T T(wi) T F ()

\ J/

~~

=:BanN (wg) :V}zwk)

SCP applied to LS = Newton method with " Gauss-Newton Hessian"

Ban(w) = V2 f(w)
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Generalized Gauss-Newton (GGN) [Schraudolph 2002]

For general convex ¢(-) we have for f(w) = ¢(F(w))

Vi f(w) = J(w) " VE$(F(w)) J(w)+ 351, V2 F(w) Ve, $(F(w))

J

-~

-~

=:Bgan(w) =Egan(w)
"GGN Hessian” " Error matrix’
Generalized Gauss-Newton (GGN) method iterates according to
—1
Wi+1 = wi, — Baan(w) ™V f(wg)

Note: GGN solves convex quadratic subproblems

min_ f(w)+VF(wr) (w—we)+ = (w-wi) Baon (wk) (w—ws)
weR"™ 2 ,

:3fGG;?w§wk)
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Tutorial Example: SCP and GGN Approximation

w=0.3
3.0
2.5 1
5 2.0-
O
(e
=
o 1.5
=
O
9
S 1.0-
— f(w)
0.5 1
—— fscp(w; W)
— feen(w; W)
O-O 1 1 1 1 1 1 1
-3 -2 -1 0 1 2 3 4 5

decision variable w
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lteration count: SCP more predictable than GGN

(on a similar example)
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General smooth NLP formulation with constraints

Now regard an NLP with smooth convex ¢o, @1, ..., 0m

minimize  ¢o(Fo(w))
w E Rnw ~ v
fo(w)
subject to @( i (w )) i=1,...,m,
=:fi(w)
Gw)=0

SCP subproblem becomes

minimize qbo(F(%in (w; w))
w € R™

subject to ¢ (F; ™ (w;@)) <0, i=1,...,m,
' 0

(SCP algorithm is expensive, but multiplier-free and affine-invariant)
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Sequential Linear Programming (SLP)

If functions ¢o, ..., ¢m are linear, SCP just solves linear programs (LP)

. . . lin —_—
minimize fo (w;w)
n
weR™

&

subject to  fi" (w;
w;

)<0, i=1,...,m,
Glin( O

)

&

v

might be called Sequential Linear Programming (SLP) (" Method of
Approximation Programming” by Griffith & Stewart, 1961)

equivalent to standard SQP with zero Hessian
SLP only attracted to NLP solutions in vertices of feasible set

works very well for L1-estimation [Bock, Kostina, Schléder 2007]

vvyyvyy

converges quadratically once correct active set is discovered
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Constrained Gauss-Newton [Bock 1983]

Use Bean(w) := Jo(w) ' VZ¢o(Fo(w))Jo(w) and solve convex quadratic

program (QP)

: 1
minimize  fo(w; @) + = (w — @) ' Bean(@)(w — @)
we R™ 2
subject to  fi™(w;w) <0, i=1,...,m,

> like SCP, the method is multiplier free and affine invariant

» QPs are potentially cheaper to solve

» but CGN diverges on some problems where SCP converges
Remark: for least-squares objectives, this method is due to [Bock 1983]. In many
papers, Bock’s method is called "the Generalized Gauss-Newton (GGN) method”. To

avoid a notation clash with Schraudolph and the computer science literature, we prefer
to call Bock’s method "the Constrained Gauss-Newton (CGN) method” .
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Seqguential Convex Quadratic Programming (SCQP)

[Verschueren et al 2016]

Bscqp(w, 1) := Jo(w) " V2o (Fo(w))Jo(w) + >  pidi(w) ' Vi (F;(w))Ji(w)
1=1

: 1
minimize f5"™ (w; @) + = (w — @) ' Bscqp (0, i) (w — @)
w € R"w 2
subject to  fi™(w;w) <0, i=1,...,m, | pT,
Glin(w; w) =0

obtain pair (wgy1, tg+1) from solution at (w, i) = (wg, k)

"optimizer state” contains both, w and inequality multipliers

again, only a QP needs to be solved in each iteration

again, affine invariant

Bscqr(w, 1) = Begn(w) (more likely to converge than CGN)

for unconstrained problems, SCQP becomes GGN

in fact, SCQP has same contraction rate as SCP [Messerer &D., ECC 2020]

vV vV v v v v Y
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Sequential Quadratically Constrained Quadratic Programming (SQCQP)
[Messerer et al 20211

B;(w) = Ji(w) ' V2¢; (Fs(w))J;(w), i=0,1,...,m
e

minimize  fi™(w; @) + = (w — @) ' Bo(w)(w — @)
w € R™w 2

: 1
subject to ™ (w; @) + §(w — @) Bj(w)(w—w) <0, i=1,...,m,,
GU (w; w) = 0

» obtain wy1 from solution at w = wg

\4

multiplier free, optimizer state contains only w

» a quadratically constrained quadratic program (QCQP) needs to be solved in
each iteration, e.g. via HPIPM [Frison et al. 2022]

» again, affine invariant

» also SQCQP has same contraction rate as SCP [Messerer et al. 2021]
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|dentical Local Convergence of SCP, SCQP, SQCQP

Theorem 1: Local Convergence of SCP, SCQP, SQCQP [Messerer et al. 2021, ESAIM Survey]

Regard KKT point 2" := (w*, u*, A*) with LICQ and strict complementarity.

Denote the reduced Hessian by A, the reduced SCQP Hessian by B. (*) and
assume that B, > 0. Then

» 2" is a fixed point for all three methods SCP, SCQP and SQCQP

» all three methods are well-defined in a neighborhood of z*

» their linear contraction rates are equal and given by the smallest & € R
that satisfies the linear matrix inequality

~ ~

—aB, < A, — B, < aB, (3)

(*) As := Z"V2L(w*, u*,\*)Z and B, := Z " Bscqp(w*, n*)Z with Z a
fixed nullspace basis of the Jacobian of active constraints
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|dentical Local Convergence of SCP, SCQP, SQCQP

Theorem 1: Local Convergence of SCP, SCQP, SQCQP [Messerer et al. 2021, ESAIM Survey]

Regard KKT point 2" := (w*, u*, A*) with LICQ and strict complementarity.
Denote the reduced Hessian by A, the reduced SCQP Hessian by B. (*) and
assume that B. > 0. Then

» 2" is a fixed point for all three methods SCP, SCQP and SQCQP
» all three methods are well-defined in a neighborhood of z*

» their linear contraction rates are equal and given by the smallest & € R
that satisfies the linear matrix inequality

~ ~

—aB, < A, — B, < aB, (3)

(*) As := Z"V2L(w*, u*,\*)Z and B, := Z " Bscqp(w*, n*)Z with Z a
fixed nullspace basis of the Jacobian of active constraints

Corollary

Necessary condition for local convergence of all methods is B, >

Proof of corollary: Set a=1 in (3).
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Tutorial Example: Objective and Local Contraction Rate
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iteration k .
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Desirable Divergence and Mirror Problem [cf. Bock 1987]

SCP and GGN do not converge to every local minimum. This can help to avoid
"bad” local minima, as discussed next.

2
I
4 ° O +
) ¥ o)
e ()
1 + +
2 .
0 2 4 6

Regard maximum likelihood estimation problem | min,, ¢(M (w) — y) | with

nonlinear model M : R™ — R” and measurements y € RY. Assume penalty ¢
is symmetric with ¢(—z) = ¢(z) as is the case for symmetric error
distributions. At a solution w™, we can generate " mirror measurements”

Ymr ‘= 2M (w™) — y obtained by reflecting the residuals.

From a statistical point of view, yu, should be as likely as .
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SCP divergence < minimum unstable under mirroring

2
'
o ° o +
® N\
e) ()
1 + +
) :
0 2 4 6

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w™ of ¢(M (w) — y) that satisfies SOSC. If the
necessary SCP convergence condition B, > 1A does not hold, then w* is a
stationary point of the mirror problem but not a local minimizer.
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SCP divergence < minimum unstable under mirroring

2
107
o ° O +
) N0
e ()
1 F
) :
0 2 4 6

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w™ of ¢(M (w) — y) that satisfies SOSC. If the
necessary SCP convergence condition B, > 1A does not hold, then w* is a
stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M (w*) — ymr =y — M (w™) to show
that V fur(w*) = J(w*) ' (y — M(w*)) = 0 and
V? fur(w*) = Been(w®) — Ecan(w”) = 2Baan (w*) — V2 f(w™) # 0
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Tutorial Example and Mirror Problems at Different Local Minima

good local minimum w* = 0.097 bad local minimum w* = 3.757
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Overview

Model Predictive Control - Examples and Optimization Problems
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Two Ingredients of Newton-Type Optimization

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints
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Two Ingredients of Newton-Type Optimization

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

Which of the two is more important for success in data-driven optimization?
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lterative Learning Control for Lemon-Ball Throwing
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lterative Learning of Ball Throwing with Minimal Energy
Experiments conducted by Katrin Baumgartner

iteration £k =0

Model Fy(#) maps initial velocity

.0 —— plant
u € R? to landing position y € R _ » —— model
. Aim: throw ball further than y > 10 with |
minimal initial velocity 0.0 - Omo p e TEFY Rreraa—n
Experiments with “real plant” give pairs T

iteration £k =1

(uy, y,) [shorter distance than predicted]
- We can use (1, y;) to correct the model, _ ]

<5k
and iteratively obtain 1, by solving the ™’ A
following optimization problem: 0.0 1 | . . D~ . .
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Pz

minzimize [AE: iteration k = 10
ueR,ye R

subject to  y = Fnm(uw) — Fa(uk) + yk,
(& - 7/ Q;f i
=:Fpr(usug,yg) +0 \
y 2 ].O 00_ T T T T T T T T

0.0 2.5 5.0 7.5 10.0 125 15.0 175
Dz
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lterations of Algorithm and Reduced Problem Visualization
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minimize ||ul3
u € R

subject to  Fis(u; ug, yr) > 10

U1
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Zero Order Optimization-based lterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = Fr(u) ("reality”):

-
mlrllblyr:znze d(u,y)
subject to Fr(u) —y =

0 (4)
H(u,y) <0
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Zero Order Optimization-based lterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = Fr(u) ("reality”):

-]
mlrllbtrzznze d(u,y)
subject to Fr(u) —

Y (4)
H(u,y)

0,
0

VAN

ZOO-ILC idea [cf. Schollig, Volkaert, Zeilinger]: use trial input ux with output
yr and a model Fy; to obtain new trial input ug1 from solution of

-
ml%ingrjuze o(u,y)

subject to  Fur(u) —y

H (u,y)

Fyv(uk) — yk, ()
0

VAN

Questions: Does this method converge? What is its loss of optimality?
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Feasibility and Loss of Optimality of ZOO-ILC

Theorem 2 [Baumgartner et al., in preparation]

For any fixed point (i, %) of the ZOO-ILC algorithm with multipliers (X, ji)
holds under mild conditions:

> (u,y) is feasible for the real problem

> the loss of optimality compared to a real solution (ur,yr) is bounded by:

(a,7) — plur,yr) < X' (Ju(@) — Jr(a)) (ur — @)

Here, the Lagrangian of the model problem is given by
Llu,y, A p) = $u,y) + X' (Fu(u) —y — be) + p' H(u,y)

and Jy(uw) and Jgr(u) are the Jacobians of Fy(u) and Fr(u).
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Special cases where ZOO-ILC delivers a lossless solution

6(u,5) — p(ur,yr) < A" (Ju(@) — Jr(a)) (ur — @)

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):
A=0

2. Model and real Jacobian coincide at solution (rarely the case):

3. Constrained problems where solution iy, is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)
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Special cases where ZOO-ILC delivers a lossless solution

6(u,5) — p(ur,yr) < A" (Ju(@) — Jr(a)) (ur — @)

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):
A=0

2. Model and real Jacobian coincide at solution (rarely the case):
Iv(@t) — Jg(it) =0

3. Constrained problems where solution iy, is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)
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Solutions for L,- and L__-norm minimisation

. . . 2
minimize ||ul||2
ueR
subject to  Fis(u; uk, yx) > 10
20.0
\—;_-y |
Z_ |
17.5 - e
2 £
=)
15.0 1
W
“
12.5 1 <
£ 10.0 A
7.5 -
5.0 -
2.5 \
0-0 1 1 1
0 5 10 15 20

suboptimality: 0.874 < 1.377 (bound)
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Solutions for L,- and L__-norm minimisation

Iminimize [ u]|2 minimize  ||u||co
subject to  Fas(u; uk, yr) > 10 subject to Z*:’M(u;uk,yk) > 10
20.0 ~—— 20.0 = |
- e D e~
17.5 G- =
<\ 15.0 = |\
15.0 3 =
~
12.5 \)O 12.5 o
s 10.0 1 s 10.0 A
7.5 7.5
5.0 - 5.0 -
2.5 \ 2.5
0.0 : . — 0.0 . .
0 5 10 15 20 0 5 10 15 20
Uy Ui
suboptimality: 0.874 < 1.377 (bound) solution in vertex, no loss of optimaliy

M. Diehl 59



Time-Optimal Motion of an oscillator (L1-tracking)

Real plant: 72y 4+ 2Tdy + vy + fy° = Kgu

Ty
G _ _ _ inimi t) — yret| + au(t)? dt
withT=1,d=0.5,=2,Kzy=0.9 r?jl(lr;trgiz)e /o Y(t) — Yret| + au(t)

subject to  y(t) = Fm(t;u) + ye(t) — Fam(t; uk),

Model: 775 + 2Tdy + y = Kyu
()] <1, t€[0,Tul

a=10""
iteration k =1 iteration k =1

0.75 : 1 - S I S
optimal v .

0.50 4 F=—————tm — plant

— model

= 0.25 - = 07
optimal u
0.00 A

TN I DR B W I § S — current u
0 1 2 3 4 0 1 2 3 4

t t
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Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1 iteration k =1
0.75 A : 14 —_————— e e
optimal v
0.50 +—=—————tm plant
model
= 0.25 - U
optimal u
0.00 A
TN I U i W I | S — current u
T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
t t
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Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1 iteration k =1
0.75 - 1 - e ]
optimal v
0.50 A —— plant
—— model
= 0.25 - U
optimal u
0.00 A
TN I U i W I 1 S — — current u
T T T T T T T T T T
0 1 2 3 4 0 1 2 3 4
t t
iteration k = 2 iteration k = 2
0.75 14—
'\
0.50 A
> 0.25 - = 07
0.00 A
NG R O SNUPS ESEET S (S ——
T T T T T T T T T T
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t t

M. Diehl 62



Time-Optimal Motion of an oscillator (L1-tracking)

iteration k =1

0.75 1
0.50 -
= 0.25 -

0.00 1

optimal
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— model

iteration k = 2
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0.50 -
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0.00 A

iteration k = 5
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0.50 -
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t
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When does the ZOO-ILC method converge?

Theorem 3 (Convergence of ZOO—ILC) [Baumgartner et al., in preparation]

Regard a fixed point z = (@, 3, A, fia) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local

contraction rate is given by the spectral radius p(A) of the matrix

0
A = [, 0 0 0] (%(2;@,@)) JM(M)QJR(U)
0

The ZOO-ILC method converges if p(A) < 1 and diverges if p(A) > 1.

Here, 14 are the active constraint multipliers and R(z;u’,y’) is defined by

[ Vula(u,y, A, pa;u',y') |
Vy/LM(U, Ys Ay [LA; ula y/)
Fu(u) —y+y — Fu(u)

HA(“? y)

where the Lagrangian of the model problem is given by

R(z;u',y) :=

Lot (u, yy A pras ', y') = d(u,y) + A (Fu(u) —y+y — Fu(u)) + paHa(u,y)

and Jy(u) and Jr(u) are the Jacobians of Fyr(u) and Fr(u).
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When does the ZOO-ILC method converge?

JMm (TL) — JR(”L_L)
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When does the ZOO-ILC method converge?

Contraction rate grows with distance between model and real Jacobian.
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Overview

Model Predictive Control - Examples and Optimization Problems

- Convexity Exploiting Newton-Type Optimization
- Sequential Convex Programming (SCP)
- Generalized Gauss-Newton (GGN)
- + SLP, CGN, SCQP, SQCQP

- Zero-Order Optimization-based lterative Learning Control

- Tutorial Example
- Bounding the Loss of Optimality and Exactness

= - Mixed Integer Optimal Control
- Problem Statement
+ Three Step Algorithm
- Application to Renewable Energy System in Karlsruhe
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Mixed Integer Optimal Control Problem with Binary Inputs
(in outer convexified form)

T
x(g{l&?;gl(l?i() O/L(x, u,b,s) dt + M (x(T)) (2a)
subject to x(0) = Zg (2b)
ne g

i—f — Z-_Zlbi : fi(a:,u,c), Z-_Zlbi(t) =1, (2¢)

bi(t) € {0,1) [@ 0 < b;(t) L (1—b(t)) > o} for i=1,...n5, (2d)
—s+r1§r(:€,u,b,c) < 7ry+s, for t € [O,T} (2e)

( + additional combinatorial constraints) (2f)

x(t): states, u(t): continuous controls, b(t): binary controls, s(t): slack variables

c(t): time-varying parameters, f: system dynamics, 1 < r < ry: path constraints
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NMPC for solar thermal test plant at Karlsruhe University of
Applied Sciences [Burger et al. 2019]

W

Vacuum tube collectors (roof)

Recooling unit (roof) Ambient sensors (roof)
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Control-oriented modeling of the solar thermal system

Mytsc

Tpscf

Tvtsc Tvtsc,s

Primary
solar circuit

Ppsc

1 3
Recooling
tower
=
RT heat
exchanger

Qs

Tshx,psc
T~
| || T
> . > hts,1
Mo hts,m
Tshx,ssc Thts,Q
Secondary
solar circuit
. gz : . Thtsanhts
Messe p mo,hts,b ~N~_
e HT storage

M hts,b !

N\

EENN\\R
Tac,ht m %c,llt

Adsorption cooling machine

Tits,nlts

LT storage

T :
CFlts,l 4&
Tie C(l)olidng
Tllts,2 oa

a

Plc

Nonlinear switched system ODE model with n, = 20, ny = 2, n, = 5, and n. = 4,

differentiable in all arguments within the domain of interest
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Three Step Decomposition with CIA Norm
[Sager et al., 2011]

1. Solve Nonlinear Optimal Control Problem with Relaxed Integer Controls,
using direct collocation or multiple shooting and a nonlinear programming
(NLP) solver.

2. Find the “combinatorial integral approximation (CIA) input trajectory that
(a) satisfies all combinatorial constraints and
(b) minimises the integrated difference to the relaxed input trajectory

10 15
Time (h)

(pycombina algorithm is 10-100x times faster than standard MILP solver)

3. Fix the integer inputs and reoptimize over all remaining variables by
solving another NLP.
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Numerical Results: Three Step CIA Algorithm
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Experimental Results from Sept 14-17, 2019
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Every 2 minutes, a new nonlinear mixed integer optimal control problem is
solved, using a real-time algorithm based on CasADi, IPOPT [Wachter and
Biegler 2006], and Pycombina [Burger et al, 2019], an implementation of
the combinatorial integral approximation (CIA) method [Sager et al 2011].
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Alternative to CIA Decomposition: Gauss-Newton based MIQP

[BUrger et al., in preparation]

» Derive convex Gauss-Newton-type approximation of original
MINLP from linearization at relaxed MINLP solution.

» Solution of resulting MIQP can yield improved integer solution
in terms of objective and feasibility of the original MINLP.

» MIQP is equivalent to minimization of a distance function that
is a first order accurate approximation of the true objective.

= JInep(y)
~ Joa(y ) )
== Jex(y3y,2") / p

GN-MIQP from linearization at (y*, z*)

Original MINLP

.1 2
min o [|F1(y, 2)lz + F2(y, 2)

1

Y,z

min o[£y, 2 9, 25 + Fa(y, zy*, 2%)

s.t. G(y,z) =0 s.t. Gp(y,z;y%,2") =0
H(y,2) <0 Hy(y,29",2") <0
y € L™ y € L™
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Numerical results: Three Step GN-MIQP Decomposition

Step 1: Solution MINLP binaries relaxed
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Comparison of CIA and GN-MIQP Solution
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GN-MIQP delivers significant feasibility improvements, at the expense of increased computational cost.
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Summary and Recent Software Developments

Exploiting convex structures in nonlinear problems is key for reliable and fast nonlinear MPC
algorithms.

Sequential Convex Programming (SCP) and its variants converge linearly. They avoid “bad”
minimizers (where the nonlinearity dominates the convex substructure).

- Zero-Order Optimization allows us to design theoretically solid lterative Learning Control
algorithms. They can recover an optimal solution in special cases.

Mixed Integer Optimal Control can be addressed by Three-Step-Decomposition method with
classical CIA or novel Gauss-Newton MIQP variant

Latest open-source (BSD 2) software developments from the team are:

- BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.), targeting dense
matrices from 10x10 to 400x400

- HPIPM: interior point QP and QCQP solver for block-sparse problems with optimal control and tree structure,
based on BLASFEO (Frison et al., IFAC 2020, ECC 2022)

- acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM and CasADi, with
user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison, Frey et al., successor of
ACADO)

- pycombina: fast solution of a special class of mixed integer linear programs arising in the combinatorial
integral approximation (CIA) method for nonlinear mixed integer optimal control (Burger et al., IFAC 2020)

- NOS-NOC: Non-Smooth Systems Numerical Optimal Control package based on MATLAB, CasADi, IPOPT
(Nurkanovic et al., CDC 2022, submitted)
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Thank you
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