
Embedded Learning and Optimization Methods
for Nonlinear Systems

Moritz Diehl
Systems Control and Optimization Laboratory

Department of Microsystems Engineering and Department of Mathematics
University of Freiburg

joint work with Florian Messerer, Katrin Baumgärtner, and Adrian Bürger

KU Leuven, ELO-X Spring School, March 24, 2022

M. Diehl

Overview

• Model Predictive Control - Examples and Optimization Problems

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• + SLP, CGN, SCQP, SQCQP

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality and Exactness

• Mixed Integer Optimal Control
• Problem Statement
• Three Step Algorithm
• Application to Renewable Energy System in Karlsruhe

2

M. Diehl

Model Predictive Control (MPC)

3

Always look a bit into the future

Example: driver predicts and optimizes,
and therefore slows down before a
curve

M. Diehl

Optimal Control Problem in MPC

4

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon

controls (unknowns / variables)

simulated state trajectory

Notation for Ordinary Di↵erential Equation (ODE) Models

I denote ds
dt (t) by ṡ(t)

I drop time argument, abbreviate ṡ(t) = fc(s(t), a(t)) by

ṡ = fc(s, a)

I In this talk, we try to use the RL notation: s for state and a for control action

I But in control engineering, one uses: x for state and u for control action, i.e.,

ẋ = fc(x, u)

(this notation might accidentally ”slip through” on some slides)

Optimization Methods for Nonlinear Systems M. Diehl, University Freiburg 5

M. Diehl

Optimal Control Problem in MPC

5

For given system state x, which controls u lead to the best objective value
without violation of constraints ?

prediction horizon

controls (unknowns / variables)

simulated state trajectory

Notation for Ordinary Di↵erential Equation (ODE) Models

I denote ds
dt (t) by ṡ(t)

I drop time argument, abbreviate ṡ(t) = fc(s(t), a(t)) by

ṡ = fc(s, a)

I In this talk, we try to use the RL notation: s for state and a for control action

I But in control engineering, one uses: x for state and u for control action, i.e.,

ẋ = fc(x, u)

(this notation might accidentally ”slip through” on some slides)

Optimization Methods for Nonlinear Systems M. Diehl, University Freiburg 5

M. Diehl

Model Predictive Control of RC Race Cars (in Freiburg)

6

Minimize least squares distance to centerline, respect constraints. Use nonlinear
embedded optimization software acados coupled to ROS, sample at 100 Hz.

[Kloeser et al. 2020]

M. Diehl

MPC needs numerical simulation
e.g. Runge Kutta (RK) methods
(for one sampling interval with piecewise constant control)

7

Discretization equations for general Runge Kutta (RK) methods

Exact ODE solution

x(0) = s,

ẋ(t) = v(t)

v(t) = fc(x(t), u),

for t 2 [0,�t]

S(s, u) := x(�t)

N steps of general RK method with S stages

x0 = s, xk+1 = xk + h
PS

j=1 bjvk,j

xk,i = xk + h
PS

j=1 aijvk,j

vk,i = fc(xk,i, u),

for i = 1, . . . , S, k = 0, . . . , N � 1

S(s, u) := xN

I aij and bj are Butcher tableau entries of (potentially implicit) Runge Kutta method

I step length h := �t/N ; intermediate states xk, xk,i, vk,i 2 Rns with integration step index
k 2 {0, 1, . . . , N} and RK stage index i, j 2 {1, . . . , S}

I N nonlinear equation systems with each 2Sns equations in 2Sns unknowns (xk,i, vk,i)

I solved by Newton’s method (or imposed as equality constraints in optimization)

Optimization Methods for Nonlinear Systems M. Diehl, University Freiburg 11

Notation for Ordinary Di↵erential Equation (ODE) Models

I denote ds
dt (t) by ṡ(t)

I drop time argument, abbreviate ṡ(t) = fc(s(t), a(t)) by

ṡ = fc(s, a)

I In this talk, we try to use the RL notation: s for state and a for control action

I But in control engineering, one uses: x for state and u for control action, i.e.,

ẋ = fc(x, u)

(this notation might accidentally ”slip through” on some slides)

Optimization Methods for Nonlinear Systems M. Diehl, University Freiburg 5

M. Diehl

MPC needs numerical optimization
e.g., using Nonlinear Programming (NLP)

8

NMPC needs to solve Nonlinear Programs (NLP)

Continuous Time NMPC Problem

min
x(·),u(·)

Z T

0
L(x, u)dt + E(x(T))

s.t. x(0) = x̄0

ẋ(t) = f(x(t), u(t))

0 � h(x(t), u(t)), t 2 [0, T]

0 � r(x(T))

Assume smooth convex L, E, h, r.
Nonlinear f makes problem nonconvex.
Direct methods discretize, then optimize.
E.g. collocation or multiple shooting.

Discretized NMPC Problem (an NLP)

min
x,z,u

PN�1
k=0 �L(xk, zk, uk) + E(xN)

s.t. x0 = x̄0

xk+1 = �dif
f (xk, zk, uk)

0 = �alg
f (xk, zk, uk)

0 � �h(xk, zk, uk), k = 0, . . . , N�1

0 � r(xN)

Again, smooth convex �L, E, �h, r.
Variables x = (x0, . . .) and z = (z0, . . .) and
u = (u0, . . . , uN�1) can be summarized in
vector w 2 Rnw .

NMPC with jumps and discrete actuators Moritz Diehl 4

M. Diehl

MPC Example: Point-To-Point Motions [PhD Vandenbrouck 2012]

9

Fast oscillating systems (cranes, plotters, wafer steppers, …)
Control aims:

• reach end point as fast as possible
• do not violate constraints
• no residual vibrations

Idea: formulate as embedded optimization problem
 in form of Model Predictive Control (MPC)

M. Diehl

Time Optimal MPC of a Crane

10
Hardware: xPC Target. Software: qpOASES [Ferreau, D., Bock, 2008]

SENSORS

•line angle
•cart position

ACTUATOR

•cart motor

MPC

M. Diehl

Time Optimal MPC of a Crane

11

KU Leuven [Vandenbrouck, Swevers, D.]

M. Diehl

Optimal solutions varying in time (inequalities matter)

12

Solver qpOASES [PhD H.J. Ferreau, 2011], [Ferreau, Kirches, Potschka, Bock, D. , A parametric
active-set algorithm for quadratic programming, Mathematical Programming Computation, 2014]

M. Diehl

eco4wind: MPC for wind turbine control

13

Industrial partners: IAV, SENVION (now bankrupt)
Aim: minimise fatigue and oscillations, respect constraints.
Nonlinear MPC with about 40 states based on ACADO/acados with QP solver
HPIPM running on industrial hardware at IAV.

M. Diehl

Switched NMPC for Electric DC-AC Power Converter
NMPC 48 kHz [Stickan, Frison et al. ACC 2022]

14

Switched NMPC for Electric DC-AC Power Converter (NSD2)
PhD work by Benjamin Stickan (Fraunhofer ISE) and Gianluca Frison

I NMPC aim: follow sinusoidal reference, react
fast to grid failures

I 3 states, 1 binary input, 1 state dependent

switch due to diodes (in blanking time)

I sampling time: 25 microseconds, ARM
A53@1.1GHz, horizon N = 2

I switching integrator, 3 RK4 and 4 Euler
steps, generated as C code via CasADi

I hand tailored SQP real-time iteration, on
track to be applied on industrial photovoltaic
power converter (in DyConPV project). ×	1e-20.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
x3_ref
x3

-400

-300

-200

-100

0

100

200

300

400

×	1e-21.3040 1.3045 1.3050 1.3055 1.3060 1.3065

-6.5

-6.0

-5.5

-5.0

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

v

x1

NMPC with jumps and discrete actuators Moritz Diehl 2

TABLE I
CONTROL ALGORITHM PARAMETERS

N 1 fx1(·) expl. RK1
Ts 20.83 µs � Tbl/3
Tbl 300 ns Q diag(0, 0, 1, 0, 0)
VDCp 400V R 0.0001
VDCn 400V C 4.7 µF
fnbl(·) expl. RK3 L2 104 µH
fbl,a(·) expl. RK1 !g 2⇡50Hz
fbl,b(·) expl. RK1

0 2 4 6 8 10 12 14

�10

0

10

t [ms]

i L
2
[A

]

reference
NMPC nocomp
NMPC

Fig. 5. Effect of the blanking time on the tracking accuracy of the NMPC
during an ideal simulation. NMPC nocomp denotes the method excluding
the blanking time dynamics (fbl(·)).

relaxed system dynamics entering the NLP in the Mayer
term through matrix P. The second is the assumption of a
constant reference. Possible solutions to eliminate the steady-
state error could be the use of (resonant) error integrators
and dynamic references. Since the scope of this work is the
dynamic performance and the possibility to include almost
arbitrary nonlinerities, techniques to improve steady-state
accuracy and their tuning are not considered here. Fig. 6
compares the NMPC controlled output current to that of
an LQR during a strong disturbance, a grid voltage drop,
in an ideal simulation. The LQR feedback gain Klqr was
computed from matrix P. The optimal controller feedback
u⇤
f,0 = �Klqrxf,0 is thus the solution of (24) for N = 0,

neglecting the more accurate dynamics.
Even though the minimal NLP horizon length and only a
single SQP step is used, the NMPC algorithm proves to
stabilize the system faster. The two main reasons are the
explicit consideration of the switching nature of the system
on the one hand, and the capability of taking the nonlinear
behavior of the inductor into account within the first step of
the overall infinite prediction horizon on the other.
Remark 3: No blanking time was considered in Fig. 6,
neither in the simulation model nor in the controller, as
blanking time compensation techniques for LQR are not
considered in this work.

C. Real-Time Experimental Results

The real-time control algorithm was implemented on one
of the ARM Cortex A53 cores of a Xilinx Ultrazed™
development board using Jailhouse [26], which controls a
10 kW SiC-based inverter system. All other software parts,
apart from the control algorithm, were implemented on either

0.2 0.4 0.6 0.8 1 1.2 1.4

0

20

40

60

t [ms]

i L
2
[A

]

reference
LQR
NMPC

Fig. 6. Fault behavior comparison of LQR and NMPC during a grid voltage
drop from vg = 325V to zero.

one of the Cortex R5 cores, or the programmable logic (e.g.,
data acquisition, PWM generation, . . .). The feedback phase
of the RTI scheme takes 7.8 µs, and the preparation phase
8.6 µs, such that one RTI step can be performed in 16.4 µs. In
a lab experiment, the converter was connected to a sinusoidal
voltage source and its behavior during a 70% grid fault (vg
drops from 325V to 97.5V) was analyzed. Fig. 7 shows
the results. The measured values are denoted as ’meas’.
To evaluate the accuracy of the model, a simulation of the
system with a grid voltage vg,sim = vg,meas was performed
and the results are denoted as ‘sim’. The results show, that the
closed-loop simulation model behavior is very similar to that
of the physical system, which indicates accurate modeling.

VI. CONCLUSION

A novel solution approach for online switching time con-
trol of a power electronics circuit was presented. In each
timestep, the control problem is formulated as an NLP that
optimizes over the switching times (which accounts for the
duty-cycle in the proposed scheme) utilizing variable time
numerical integrators. This allows exact modeling of the
switching nature of the system and additionally, typical non-
linear effects such as blanking time and magnetic saturation
of inductors can be included easily. It was demonstrated
that an RTI scheme with a minimal horizon length of
N = 1 already leads to significant improvements in control
performance compared to an LQR, which is a consequence
of accurately modeling and taking into account the switched
input as well as the nonlinear inductor dynamics. Moreover,
the real-time capability for fast controller sampling times
of only a few microseconds was proven using a low cost
embedded platform. This makes the approach feasible even
for high switching frequencies. In addition to the system
considered in this paper, the approach can easily be adopted
for various power electronics applications. The benefit of
directly controlling the switching times even grows with de-
creasing switching frequency, as longer prediction horizons
become real-time feasible. Finally, it should be emphasized
that the presented approach is capable of handling many
nonlinearities appearing in power electronics applications,
such as saturating transformers, variable grid inductances or
effects caused by diodes.

sampling time for the controller. Assuming ideal switching
within each time interval, the input u to the filter is described
by

u(t, d) =
8
><

>:

�VDCn 0 t < (1�d)Ts

2 (S2,on, S1,o↵)

VDCp
(1�d)Ts

2 t < (1+d)Ts

2 (S2,o↵ , S1,on)

�VDCn
(1+d)Ts

2 t < Ts (S2,on, S1,o↵)

(3)

The pattern in (3) describes a positive pulse VDCp centered
around Ts/2, with an implicit upper bound on the number
of switching actions, thereby imposing an upper bound on
the switching frequency which is usually desired in power
electronics systems. It should be noted that different patterns,
e.g. left/right aligned or a completely arbitrary definition of
the switching times, are also possible. Often, the switching
nature of the system is completely neglected. Instead, a
relaxed constant control input

ur =

Z Ts

0
u(t)dt = d (VDCp + VDCn)� VDCn (4)

is assumed over Ts, such that ur 2 [�VDCn, VDCp]. In case
of linear system dynamics of the filter, this approximation,
which leads to a model-plant mismatch, is commonly used
for linear control schemes. To investigate the possible impact
of the approximation, a simple linear LCL-filter system
without grid voltage

ẋs =

2

4
1

L1s
(u� vCs)

1
Cs

(iL1s � iL2s)
1

L2s
vCs

3

5 (5)

with xs =
⇥
iL1s vCs iL2s

⇤|

is considered here. The inductor and capacitor values are
L1s = 600 µH, Cs = 4.7 µF and L2s = 104 µH. Fig.
2 compares a centered and a right-aligned positive input
pattern leading to the same average value ur with initial state
xs(0) =

⇥
0 0 0

⇤| and Ts = 20.83 µs. The difference in
the final state vector, especially in vCs, motivates a control
algorithm that takes into account the switching nature of the
system.

C. Blanking Time

In power electronics applications, it is necessary to prevent
short circuits at all cost since they can lead to irreversible
damage of the system. In the considered system in Fig. 1, S1
and S2 shall never conduct at the same time. Therefore, a safe
state, the blanking time, is inserted after the currently active
MOSFET gets turned off, and before the complementary one
turns on. During this time, both switch signals remain ‘off’.
The inductor current iL1s will then commutate to either of
the protecting body diodes of the MOSFETs, depending on
its direction. This leads to an input voltage u to the circuit
during the blanking time, which is either VDCp or -VDCn

for iL1s 6= 0. If iL1s reaches zero, it will remain at zero
for the rest of the blanking time which can be interpreted as
an implicit system switch. During the blanking time of the

0 5 10 15 20

�400

0

400

t [µs]

u [V]

0 5 10 15 20

�400

0

400

t [µs]

u [V]

0 5 10 15 20

�20

�15

�10

�5

0

t [µs]

iL1s[A]

vCs[V]

iL2s[A]

0 5 10 15 20

�20

�15

�10

�5

0

t [µs]

iL1s[A]

vCs[V]

iL2s[A]

Fig. 2. Comparison of center- and right-aligned pulses during Ts.

system described in (5), this can formally be written as

ẋs,bl =

2

4
1

L1s
(ubl(·)� vCs)

1
Cs

(iL1s � iL2s)
1

L2s
vCs

3

5

ubl(iL1s, VDCp, VDCn) =

8
><

>:

�VDCn iL1s > 0

VDCp iL1s < 0

vCs iL1s = 0

. (6)

D. Inductor Saturation

The saturable behavior of a powder iron core inductance L,
as considered in this work, is modeled as a function of the
current i that flows through the inductor by

L(i) = a+ be�ci2 , (7)

where a, b, and c are scalar parameters in R. One advantage
of this choice over e.g. a polynomial approximation is that,
as long as a > 0, c > 0 and b > �a, the value of L cannot
become zero. Thus, numerical issues in the controller caused
by zero division in ẋf are avoided. This simple choice of
model does not have a physical connection such as e.g., the
Jiles-Atherton model without hysteresis [15], [16], but it still
proves to be quite effective especially in the context of fast
numerical integration and sensitivity generation. However,
some inductors show additional hysteretic behavior, which
cannot be represented by (7) and is not considered here.
The parameters can be obtained experimentally by first
applying an excitation voltage, e.g., a pulse, to the inductor,
measuring the current response and then solving the nonlin-
ear optimization problem

min
pL,

iL,0,...,iL,N

N�1X

k=0

(iL,k � īL,k)
2
+ �b2

s.t.

iL,k+1 = fL(iL,k, v̄L,k,pL), k = 0, . . . , N � 2

(8)

remain constant within each timestep. Sophisticated search
algorithms like sphere decoding are then used to efficiently
determine the optimal switching pattern. These algorithms
have shown to be of great practical relevance, but suffer from
the drawback that the overall prediction horizon can only be
short, making it mostly suitable for large converter systems
with switching frequencies below 1 kHz. To actively control
the pulse durations even for fast switching systems, a fixed
switching frequency method is presented in [9]. Because this
method relies on first order system approximations for each
switching state it can be seen as a linear approximate method.
Another recently proposed method in [10] employs an online
Nonlinear Model Predictive Control (NMPC) algorithm for
directly optimizing the pulse durations via an online evalua-
tion of the matrix exponential for the linear system dynamics
and utilization of an NMPC solver.
This paper contributes to the field of control of switched
power electronics circuits in multiple ways. First, a Real-
Time Iteration (RTI) [11] control scheme to actively con-
trol the switching times of power electronics applications
is proposed. The novelty of the proposed scheme is that
efficient numerical integrators are used to accurately model
the switched system dynamics and generate sensitivities
necessary for derivative based solvers. Based on that, a
Nonlinear Program (NLP) is derived, where the objective
is to optimize over the switching times, which in turn is
iteratively solved in real-time. The proposed scheme has
the advantage that many nonlinearities arising in real-world
applications can easily be included in the controller and
implemented efficiently. Therefore, two common nonlinear-
ities are considered in this paper. The first is the so-called
blanking time or dead time [12], during which the input to
the system depends on the sign of certain system states. The
second nonlinearity considered is the magnetic saturation
of an inductor, for which different modeling and estimation
methods are proposed in, e.g., [13] and [14]. A novel, yet
simple model tailored to the needs of the integration scheme
is proposed and experimentally validated.
Another advantage of the proposed scheme is that it is
suitable for low-cost processors such as e.g., the ARM Cortex
family. Especially FPGA implementations, which the FCS-
MPC and gradient based methods are often implemented
on, suffer from longer and more sophisticated development
cycles. Therefore, high performance linear algebra routines
are used to exploit the potential of an exemplary embedded
processor architecture.
To prove the effectiveness of the proposed scheme, it is
demonstrated on an industrial-near single phase, two-level
DC to AC converter system operating at a controller sam-
pling time in the lower microseconds range.

II. SYSTEM DESCRIPTION

The system under consideration is a two-level, bidirectional
power electronics converter system as depicted in Fig. 1. It
consists of two ideal voltage sources VDCp and VDCn, two
SiC (silicon carbide) MOSFETs S1 and S2 with ideal body
diodes, and an output filter composed of two inductors and

�
+ VDCp

�
+ VDCn

S1

S2

V
+�

u
L1 iL1

C

+

�
vC

L2 iL2

vg

Fig. 1. Schematic of the two-level converter system connected to an ideal
grid.

a capacitor. The L1 inductor is assumed to be built with a
saturable core material, which results in a nonlinear linkage
between flux density and current iL1. It is further assumed
that the converter is connected to an ideal, sinusoidal shaped,
electric grid vg. The control aim is to track a sinusoidal
reference with the output current iL2.

III. MODELING

The system is modeled in state-space and includes three types
of nonlinearities, which are formulated in a suitable way for a
real-time optimal control algorithm described in Section IV.
First, a model of the LCL-filter and the grid is stated. Next,
the switching nature of the input u and the blanking time in
the switching pattern for S1 and S2 is considered. Finally, a
model for a saturable inductor suitable for an NMPC control
scheme is proposed.

A. Filter and Grid Voltage Model

The state vector of the plant, composed of filter and grid, is
modeled as

xf =
⇥
iL1 vC iL2 vg,a vg,b

⇤| 2 R5, (1)

where iL1 and iL2 are the inductor currents and vC is
the voltage across the capacitor C. The grid voltage vg is
modeled via the two states vg,a and vg,b as an ideal oscillator
that oscillates at angular grid frequency !g. The system
dynamics are

ẋf =

2

66664

1
L1(iL1)

(u� vC)
1
C (iL1 � iL2)
1
L2

(vC � vg,a)
�!gvg,b
!gvg,a

3

77775
, (2)

where the inductance value of the saturable inductor L1 is a
function of iL1, and u 2 R is the input (see Fig. 1).

B. Switched Input

In many power electronics applications, the states of the
switches are not directly controlled. Instead, a pulse width
modulator (PWM) is used. Based on a modulation index d,
the modulator generates the switching pattern of the switches
S1 and S2 over a period Ts, which will also be chosen as the

M. Diehl

Nonlinear Mixed-Integer MPC of a Solar Adsorptive Cooling Machine
[Bürger et al., 2019]

15

“thesis” — 2020/1/8 — 17:09 — page 76 — #110

76 A SOLAR THERMAL TEST PLANT FOR MPC OF RENEWABLE ENERGY SYSTEMS

Figure 4.2: Depiction of (1) the Vacuum Tube Solar Collectors (VTSC) on the
roof of the building and (2) the temperature sensor at the array outlet.

A. Bürger. For this work, a reduced version which relies solely on the MQTT
communication protocol was implemented by A. Bürger, partially adopting
and/or adapting implementations from the scope of [96].

4.1 Description of system and components

The plant presented in this chapter is a solar-thermally driven climate system
installed in the building of the Faculty of Management Science and Engineering
at Karlsruhe University of Applied Sciences. During summer, the system is
used for covering cooling loads of the atrium of the faculty building, and during
winter for heating support.

A schematic depiction of the system setup and the involved components is given
in Figure 4.1. On the roof of the building, two arrays of solar thermal collectors

Figure 4.3: Depiction of (1) the Flat Plate Solar Collectors (FPSC) on the roof
of the building and (2) the temperature sensor at the array outlet.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 77 — #111

DESCRIPTION OF SYSTEM AND COMPONENTS 77

Figure 4.4: Depiction of components installed in the cellar: (1) control cabinet,
(2) Low Temperature Storage (LTS), (3) Adsorption Cooling Machine (ACM),
(4) High Temperature Storage (HTS), (5) pump Pssc, (6) pump Ppsc, (7) pump
Plc, (8) Solar Heat Exchanger (SHX).

are installed, see Figure 4.2 and Figure 4.3. The solar heat collected by these
arrays is transported into the cellar of the building and stored in a stratified
High Temperature Storage (HTS), see Figure 4.4. The Fan Coil Units (FCUs)
installed behind a plumbing wall in the atrium of the building, see Figure 4.5,
can be supported directly by the HTS for heating of the room air during winter.

During summer, the HTS can support an Adsorption Cooling Machine (ACM)
which utilizes the solar heat to generate cooling power. Cooling energy produced
this way is stored in a Low Temperature Storage (LTS) which can support the
FCUs for cooling of the room air during summer. At the roof of the building,
a Recooling Tower (RT) is installed for dissipation of heat, see Figure 4.6. In

Figure 4.5: Fan Coil Units installed in the atrium of the building: (1) plumbing
wall, (2) installation of FCUs behind the plumbing wall (picture taken during
installation of the components, now covered by wooden panels).

-- Draft version, for internal use only --

“thesis”
—

2020/1/8
—

17:09
—

page
101

—
#

135

C
O

N
T

R
O

L
-O

R
IE

N
T

E
D

M
O

D
E

L
IN

G
O

F
T

H
E

S
Y

S
T

E
M

1
0
1

Figure 5.1: Schematic depiction of the solar thermal climate system model.

-- D
ra

ft v
e

rs
io

n
, fo

r in
te

rn
a

l u
s

e
 o

n
ly

 --

Nonlinear ODE with 39 states, 6
continuous and 2 binary inputs.
Contains combinatorial constraints
such as minimum uptime, minimum
downtime, …

Predict 24 hours. Aim: minimise
electricity consumption.

M. Diehl

MPC needs System Identification and State Estimation

16

MPC needs System Identification and State Estimation

Prior to implementing an MPC controller, one needs to address two tasks:

I System Identification (o✏ine):

use a long sequence of recorded input and output data, (a0, . . . , aN) and (y0, . . . , yN), to identify
parameters p using e.g. least squares optimization or subspace identification

I State Estimation (online):

estimate the state sk by using the previous control actions (..., ak�2, ak�1) and the past
measurements (..., yk�2, yk�1) using e.g. Extended Kalman Filter (EKF) or moving horizon
estimation (MHE) (MHE uses a fixed window of past data for fitting)

Learning-based MPC typically refers to an online model adaptation, i.e., to estimating parameters
online (for which MHE is particularly suitable) (”learning a model” = ”system identification”)

Optimization Methods for Nonlinear Systems M. Diehl, University Freiburg 14

M. Diehl

Convex-over-linear Structure of MPC Optimization Problems
(MPC itself, but also System Identification and Moving Horizon Estimation)

17 31/38

Dynamic Optimization in a Nutshell

minimize
w 2 Rnw

NX

i=0

'i(Fi(si, ui)) + 'N (FN (sN))

subject to s0 = x,

si+1 = Si(si, ui), i = 0, . . . , N � 1,

Hi(si, ui) 2 ⌦i, i = 0, . . . , N � 1,

HN (sN) 2 ⌦N

I variables w = (s, u) with s = (s0, . . . , sN) and u = (u0, . . . , uN�1)

I convexities in 'i (e.g. quadratic) and ⌦i (e.g. polyhedral, ellipsoidal)

I nonlinearities in dynamic system Si and constraint functions Fi, Hi

I often: Si result of time integration (direct multiple shooting)

M. Diehl

Overview

18

• Model Predictive Control - Examples and Optimization Problems

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• + SLP, CGN, SCQP, SQCQP

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality and Exactness

• Mixed Integer Optimal Control
• Problem Statement
• Three Step Algorithm
• Application to Renewable Energy System in Karlsruhe

M. Diehl 19

Nonlinear optimization with convex substructure

2/34

Nonlinear optimization with convex substructure

minimize
w 2 Rnw

�0(F0(w))

subject to Fi(w) 2 ⌦i i = 1, . . . ,m,

G(w) = 0

Assumptions:

I twice continuously di↵erentiable functions G : Rnw ! Rng and
Fi : Rnw ! RnFi for i = 0, 1, . . . ,m.

I outer function �0 : RnF0 ! R convex.

I sets ⌦i ⇢ RnFi convex for i = 1, . . . ,m,
(possibly z 2 ⌦i , �i(z) 0 with smooth convex �i)

Idea:
exploit convex substructure via iterative convex approximations.

M. Diehl 20

Why is this class of problems and algorithms interesting ?

3/38

Why is this class of problems and algorithms interesting?

I many optimization problems have ”convex-over-nonlinear” structure

I standard NLP solvers cannot address all non-smooth convex constraints

I there exist many mature and e�cient convex optimization solvers

Some application areas:

I nonlinear least squares for estimation and tracking
[Gauss 1809; Bock 1983; Li and Biegler 1989; Sideris and Bobrow 2004]

I nonlinear matrix inequalities for reduced order controller design
[Fares, Noll, Apkarian 2002; Tran-Dinh et al. 2012]

I ellipsoidal terminal regions in nonlinear model predictive control
[Chen and Allgöwer 1998; Verschueren 2016]

I robustified inequalities in nonlinear optimization
[Nagy and Braatz 2003; D., Bock, Kostina 2006]

I tube-following optimal control problems [Van Duijkeren 2019]

I non-smooth composite minimization [Apkarian et al. 2008; Lewis and Wright 2016]

I deep neural network training with convex loss functions
[Schraudolph 2002; Martens 2016]

M. Diehl

Class Picture of Iterative Convex Approximation Methods

21

[Messerer et al., ESAIM 2021]

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

M. Diehl

Class Picture of Iterative Convex Approximation Methods

22

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

[Messerer et al., ESAIM 2021]

M. Diehl

Class Picture of Iterative Convex Approximation Methods

23

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

[Messerer et al., ESAIM 2021]

M. Diehl

Class Picture of Iterative Convex Approximation Methods

24

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

[Messerer et al., ESAIM 2021]

M. Diehl

Class Picture of Iterative Convex Approximation Methods

25

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP

SCQP

SQCQP

CGGN
CGN

GGN

GN

S-SDP S-SOCP

SLP

[Messerer et al., ESAIM 2021]

M. Diehl 26

Sequential Convex Programming (SCP)

3/34

Method 1: Sequential Convex Programming (SCP)

I linearize F
lin
i (w; w̄) := Fi(w̄) + Ji(w̄) (w � w̄) with Ji(w̄) := @Fi

@w (w̄)

I formulate convex subproblems:

minimize
w 2 Rnw

�0(F
lin
0 (w; w̄))

subject to F
lin
i (w; w̄) 2 ⌦i, i = 1, . . . ,m,

G
lin(w; w̄) = 0

I start at w0 with k = 0

I solve convex subproblem at w̄ = wk to obtain next iterate wk+1

Historical notes:

The SCP idea with LP subproblems was originally called ”Method of Approximation

Programming” in [Gri�th & Stewart, 1961]. SCP with more general convex sets

(matrix cones) was proposed in [Fares, Apkarian, Noll 2002].

M. Diehl 27

Simplest case: smooth unconstrained problems

5/38

Simplest case: smooth unconstrained problems

Unconstrained minimization of ”convex over nonlinear” function

minimize
w 2 Rn

�(F (w))| {z }
=:f(w)

Assumptions:
- Inner function F : Rn ! RN of class C2

- Outer function � : RN ! R of class C2 and convex

SCP subproblem becomes

minimize
w 2 Rn

�
⇣
F lin(w; w̄)

⌘

| {z }
=:fSCP(w;w̄)

(1)

M. Diehl 28

Simplest case: smooth unconstrained problems

5/38

Simplest case: smooth unconstrained problems

Unconstrained minimization of ”convex over nonlinear” function

minimize
w 2 Rn

�(F (w))| {z }
=:f(w)

Assumptions:
- Inner function F : Rn ! RN of class C2

- Outer function � : RN ! R of class C2 and convex

SCP subproblem becomes

minimize
w 2 Rn

�
⇣
F lin(w; w̄)

⌘

| {z }
=:fSCP(w;w̄)

(1)

M. Diehl

Tutorial Example: Pseudo Huber Loss Minimization
Experiments conducted by Florian Messerer

29

Aim: fit =3 measurements to a model with using

the pseudo Huber loss

n yi m(w + xi) m(x) =
3
4

x + sin(x)

ϕδ(x) := δ2 + x2

ESAIM: PROCEEDINGS AND SURVEYS 3

Figure 1. The pseudo Huber loss as defined in (4) for two values of � compared to the absolute
value |x|, which corresponds to the L1 norm.

Huber parameter �. The larger �, the larger the quadratic region. In the limit case of � ! 0 it becomes identical
to the L1 norm. A visualization of this behaviour is given in figure 1.

Example 0.3. Assume we have modeled the explicit time dependency of some output 2 R as

 (t) =
3

4
t+ sin(t). (5)

We have noisy measurements ⌘i of this output, obtained at time xi, but they are associated with some unknown
time delay w̃, i.e., xi = ti � w̃. Our aim is now to identify this time delay w̃ from N measured input-output
pairs (xi, ⌘i), i = 1, ..., N , such that may know the true time ti = xi + w at which the output (ti) occurred.
We thus model the measurements as

⌘i = (xi + w)| {z }
:=m(xi;w)

+⌫i (6)

where ⌫i is unknown noise. The ⌘i are collected in ⌘ 2 RN and the model predictions in M(w), M : R ! RN ,
with Mi(w) =:= m(xi;w). If we choose the Huber loss (4) as penalty of the model-measurement mismatch, we
obtain

min
w 2 R

'� (⌘ �M(w))| {z }
f0(w)

(7)

as our identification problem. This has convex-over-nonlinear structure, with outer convexity �0(·) = '�(·) and
inner nonlinearity F0(w) = ⌘ �M(w). For purpose of a clean demonstration of the concepts we assume N = 3
with the date given as x = (�0.5, 0, 0.5) and ⌘ = (0, 0, 1). The Huber parameter is chosen as � = 0.1.

1. Methods for smooth unconstrained NLP

In this section we will consider only the unconstrained problem

min
w 2 Rn

�0(F0(w))| {z }
=:f0(w)

,
(8)

with �0(·) and F0(w) smooth, and introduce two methods that exploit its convex-over-nonlinear substructure.

ESAIM: PROCEEDINGS AND SURVEYS 13

Figure 6. Illustration of the mirror problem. The mirrored measurements ⌘̆ are obtained by
mirroring the original measurements ⌘ vertically at the model function.

Before continuing, we rephrase (38) as

min
w 2 Rn,
s 2 RN

�0(s)

s.t. ⌘ �M(w) s,

� (⌘ �M(w)) s,

g(w) = 0,

(40)

i.e., its epigraph reformulation with slack variable s. Note that implicitly we have s � 0 for all feasible points.
This has the advantage that (40) can be smooth even if (38) is non-smooth. Consider, e.g., the L1-norm,
�0(·) := k·k1. For the non-negative reals, s 2 Rn

+
, it holds that �0(s) = s. We can thus simply replace �0(s) by

s to obtain an equivalent smooth NLP. It follows that our convergence analysis from the previous section will
be applicable. The mirror problem of (40) is the epigraph reformulation of (39). The Lagrangian of (40) is

L(z) = L(w, s,�, µ+, µ�) = �0(s) + �>g(w) + µ>
+
(⌘ �M(w)� s) + µ>

� (M(w)� ⌘ � s) (41)

and correspondingly for its mirror problem.

Lemma 4.3. Assume z⇤ = (w⇤, s⇤,�⇤, µ⇤
+
, µ⇤

�) is a KKT point of (40). Then z̆ = (w⇤, s⇤,��⇤, µ⇤
�, µ

⇤
+
) is a

KKT point of its mirror problem at w⇤
and vice versa.

41/45

Pseudo Huber Loss Minimization

minimize
w 2 R

nX

i=1

��(yi �m(xi + w))

| {z }
=:f(w)

M. Diehl

Cost function and SCP approximation

30

ESAIM: PROCEEDINGS AND SURVEYS 5

Figure 2. Illustration of the SCP and GGN approximations to the nonlinear objective f0(w)
for two values of w̄. GGN approximates f0(w) only quadratically, whereas SCP is able to match
the characteristic shape of the outer convexity �0(·).

1.3. Local convergence Analysis

We state here already a theorem on the linear local convergence rate of SCP and GGN. This is actually a
special case of Theorem 3.1 which will be proven later for the smooth constrained case. We therefore refrain
from giving a proof of this special case and refer to the proof of the more general Theorem 3.1.

Theorem 1.2 (Linear local convergence of SCP and GGN [4]). Regard a local minimizer w⇤
of f that satisfies

rf0(w⇤) = 0 and BGGN(w⇤) � 0. Then w⇤
is a fixed point for both the SCP and GGN iterations, the iterates

of both methods are well-defined in a neighborhood of w⇤
, and the local linear contraction – or divergence –

rates of SCP and GGN are equal to each other and given by the smallest ↵ � 0 that satisfies the linear matrix

inequalities (LMI)

�↵BGGN(w
⇤) � EGGN(w

⇤) � ↵BGGN(w
⇤). (13)

As a consequence, a su�cient condition for linear local convergence with contraction rate ↵ < 1 is given by the

equivalent LMI

1

1 + ↵
r

2f0(w
⇤) � BGGN(w

⇤) �
1

1� ↵
r

2f(w⇤) (14)

In particular, a necessary condition for local convergence is given by BGGN(w⇤) ⌫ 1

2
r

2f0(w⇤). If r2f0(w⇤) � 0,
a su�cient condition for local convergence is given by BGGN(w⇤) � 1

2
r

2f0(w⇤).

Example 1.3. We return to our example problem defined in (7). Since w 2 R, the LMI in (13) simplify to
scalar inequalities. We can thus explicitly compute the smallest ↵ satisfying (13) as

↵̌(w) :=
|r

2f0(w)�BGGN(w)|

|BGGN(w)|
, (15)

though we emphasize that only for a local minimizer w⇤ the interpretation of ↵̌(w⇤) as linear local convergence
rate is valid. It is still interesting to visualize ↵̌(w) for general w, but in this case there is no theoretically sound
meaning we are aware of. In figure 3 the objective function f0(w) as well as ↵̌ are illustrated for the example
problem. For the local minimum at wgood ⇡ 0.1 – which is actually the global minimum – we compute the
theoretical contraction rate as ↵̌(wgood) ⇡ 0.02. We now tease the reader a bit by pointing to an interesting

M. Diehl

SCP for Least Squares = Gauss-Newton

31
9/38

SCP for Least Squares Problems = Gauss-Newton

With quadratic �(z) = 1
2kzk

2
2 = 1

2z
>z, SCP subproblems become

minimize
w 2 Rn

1
2
kF (wk) + J(wk)(w � wk)k22 (2)

If rank(J) = n this is uniquely solvable, giving

wk+1 = wk �
⇣
J(wk)

>J(wk)| {z }
=:BGN(wk)

⌘�1
J(wk)

>F (wk)| {z }
=rf(wk)

SCP applied to LS = Newton method with ”Gauss-Newton Hessian”

BGN(w) ⇡ r2f(w)

M. Diehl

Generalized Gauss-Newton (GGN) [Schraudolph 2002]

32
10/38

Method 2: Generalized Gauss-Newton cf. [Schraudolph 2002]

For general convex �(·) we have for f(w) = �(F (w))

r2f(w) = J(w)> r2�(F (w)) J(w)| {z }
=:BGGN(w)

”GGN Hessian”

+
PN

j=1 r
2Fj(w) rzj�(F (w))

| {z }
=:EGGN(w)

”Error matrix”

Generalized Gauss-Newton (GGN) method iterates according to

wk+1 = wk �BGGN(w)�1rf(wk)

Note: GGN solves convex quadratic subproblems

min
w2Rn

f(wk)+rf(wk)
>(w�wk)+

1
2
(w�wk)

>BGGN(wk)(w�wk)
| {z }

=:fGGN(w;wk)

M. Diehl

Tutorial Example: SCP and GGN Approximation

33

ESAIM: PROCEEDINGS AND SURVEYS 5

Figure 2. Illustration of the SCP and GGN approximations to the nonlinear objective f0(w)
for two values of w̄. GGN approximates f0(w) only quadratically, whereas SCP is able to match
the characteristic shape of the outer convexity �0(·).

1.3. Local convergence Analysis

We state here already a theorem on the linear local convergence rate of SCP and GGN. This is actually a
special case of Theorem 3.1 which will be proven later for the smooth constrained case. We therefore refrain
from giving a proof of this special case and refer to the proof of the more general Theorem 3.1.

Theorem 1.2 (Linear local convergence of SCP and GGN [4]). Regard a local minimizer w⇤
of f that satisfies

rf0(w⇤) = 0 and BGGN(w⇤) � 0. Then w⇤
is a fixed point for both the SCP and GGN iterations, the iterates

of both methods are well-defined in a neighborhood of w⇤
, and the local linear contraction – or divergence –

rates of SCP and GGN are equal to each other and given by the smallest ↵ � 0 that satisfies the linear matrix

inequalities (LMI)

�↵BGGN(w
⇤) � EGGN(w

⇤) � ↵BGGN(w
⇤). (13)

As a consequence, a su�cient condition for linear local convergence with contraction rate ↵ < 1 is given by the

equivalent LMI

1

1 + ↵
r

2f0(w
⇤) � BGGN(w

⇤) �
1

1� ↵
r

2f(w⇤) (14)

In particular, a necessary condition for local convergence is given by BGGN(w⇤) ⌫ 1

2
r

2f0(w⇤). If r2f0(w⇤) � 0,
a su�cient condition for local convergence is given by BGGN(w⇤) � 1

2
r

2f0(w⇤).

Example 1.3. We return to our example problem defined in (7). Since w 2 R, the LMI in (13) simplify to
scalar inequalities. We can thus explicitly compute the smallest ↵ satisfying (13) as

↵̌(w) :=
|r

2f0(w)�BGGN(w)|

|BGGN(w)|
, (15)

though we emphasize that only for a local minimizer w⇤ the interpretation of ↵̌(w⇤) as linear local convergence
rate is valid. It is still interesting to visualize ↵̌(w) for general w, but in this case there is no theoretically sound
meaning we are aware of. In figure 3 the objective function f0(w) as well as ↵̌ are illustrated for the example
problem. For the local minimum at wgood ⇡ 0.1 – which is actually the global minimum – we compute the
theoretical contraction rate as ↵̌(wgood) ⇡ 0.02. We now tease the reader a bit by pointing to an interesting

M. Diehl 34

Iteration count: SCP more predictable than GGN
(on a similar example)

24/34

Iteration count: SCP more predictable than GGN

0.6 0.8 1 1.2 1.4
0

5

10

initial guess w0

it
er
a
ti
o
n
s
u
n
ti
l
co

n
v
er
g
en

ce SCP

GGN

M. Diehl 35

General smooth NLP formulation with constraints

12/34

A General Smooth NLP Formulation

Now regard an NLP with smooth convex �0,�1, . . . ,�m

minimize
w 2 Rnw

�0(F0(w))| {z }
=:f0(w)

subject to �i(Fi(w))| {z }
=:fi(w)

 0, i = 1, . . . ,m,

G(w) = 0

SCP subproblem becomes

minimize
w 2 Rnw

�0(F
lin
0 (w; w̄))

subject to �i(F
lin
i (w; w̄)) 0, i = 1, . . . ,m,

G
lin(w; w̄) = 0

(SCP algorithm is expensive, but multiplier-free and a�ne-invariant)

M. Diehl 36

Sequential Linear Programming (SLP)

16/52

Sequential Linear Programming (SLP)

If functions �0, . . . ,�m are linear, SCP just solves linear programs (LP)

minimize
w 2 Rnw

f lin

0 (w; w̄)

subject to f lin

i (w; w̄) 0, i = 1, . . . ,m,

Glin(w; w̄) = 0

I might be called Sequential Linear Programming (SLP) (”Method of

Approximation Programming” by Gri�th & Stewart, 1961)

I equivalent to standard SQP with zero Hessian

I SLP only attracted to NLP solutions in vertices of feasible set

I works very well for L1-estimation [Bock, Kostina, Schlöder 2007]

I converges quadratically once correct active set is discovered

M. Diehl 37

Constrained Gauss-Newton [Bock 1983]

15/34

Constrained Gauss-Newton [Bock 1983]

Use BCGN(w) := J0(w)>r2
�0(F0(w))J0(w) and solve convex quadratic

program (QP)

minimize
w 2 Rnw

f
lin
0 (w; w̄) +

1
2
(w � w̄)>BCGN(w̄)(w � w̄)

subject to f
lin
i (w; w̄) 0, i = 1, . . . ,m,

G
lin(w; w̄) = 0

I like SCP, the method is multiplier free and a�ne invariant

I QPs are potentially cheaper to solve

I but CGN diverges on some problems where SCP converges

Remark: for least-squares objectives, this method is due to [Bock 1983]. In many
papers, Bock’s method is called ”the Generalized Gauss-Newton (GGN) method”. To
avoid a notation clash with Schraudolph and the computer science literature, we prefer
to call Bock’s method ”the Constrained Gauss-Newton (CGN) method”.

M. Diehl 38

Sequential Convex Quadratic Programming (SCQP)
[Verschueren et al 2016]

19/38

Sequential Convex Quadratic Programming (SCQP) [Verschueren et al. 2016]

BSCQP(w, µ) := J0(w)>r2
�0(F0(w))J0(w) +

mX

i=1

µiJi(w)>r2
�i(Fi(w))Ji(w)

minimize
w 2 Rnw

f
lin
0 (w; w̄) +

1

2
(w � w̄)>BSCQP(w̄, µ̄)(w � w̄)

subject to f
lin
i (w; w̄) 0, i = 1, . . . ,m, | µ

+
,

G
lin(w; w̄) = 0

I obtain pair (wk+1, µk+1) from solution at (w̄, µ̄) = (wk, µk)

I ”optimizer state” contains both, w̄ and inequality multipliers µ̄

I again, only a QP needs to be solved in each iteration

I again, a�ne invariant

I BSCQP(w, µ) ⌫ BCGN(w) (more likely to converge than CGN)

I for unconstrained problems, SCQP becomes GGN

I in fact, SCQP has same contraction rate as SCP [Messerer &D., ECC 2020]

M. Diehl

Sequential Quadratically Constrained Quadratic Programming (SQCQP)
[Messerer et al 2021]

39
21/53

Sequential Quadratically Constrained Quadratic Programming (SQCQP)

[Messerer et al. 2021]

Bi(w) := Ji(w)>r2
�i(Fi(w))Ji(w), i = 0, 1, . . . ,m

minimize
w 2 Rnw

f
lin

0 (w; w̄) +
1

2
(w � w̄)>B0(w̄)(w � w̄)

subject to f
lin

i (w; w̄) +
1

2
(w � w̄)>Bi(w̄)(w � w̄) 0, i = 1, . . . ,m, ,

G
lin(w; w̄) = 0

I obtain wk+1 from solution at w̄ = wk

I multiplier free, optimizer state contains only w̄

I a quadratically constrained quadratic program (QCQP) needs to be solved in
each iteration, e.g. via HPIPM [Frison et al. 2022]

I again, a�ne invariant

I also SQCQP has same contraction rate as SCP [Messerer et al. 2021]

M. Diehl

Identical Local Convergence of SCP, SCQP, SQCQP

4022/53

Local Convergence of SCP, SCQP, and SQCQP

Theorem 1: Local Convergence of SCP, SCQP, SQCQP [Messerer et al. 2021, ESAIM Survey]

Regard KKT point z⇤ := (w⇤, µ⇤,�⇤) with LICQ and strict complementarity.
Denote the reduced Hessian by ⇤̃⇤, the reduced SCQP Hessian by B̃⇤ (*) and
assume that B̃⇤ � 0. Then

I z⇤ is a fixed point for all three methods SCP, SCQP and SQCQP

I all three methods are well-defined in a neighborhood of z⇤

I their linear contraction rates are equal and given by the smallest ↵ 2 R
that satisfies the linear matrix inequality

� ↵B̃⇤ � ⇤̃⇤ � B̃⇤ � ↵B̃⇤ (3)

(*) ⇤̃⇤ := Z>r2L(w⇤, µ⇤,�⇤)Z and B̃⇤ := Z>BSCQP(w
⇤, µ⇤)Z with Z a

fixed nullspace basis of the Jacobian of active constraints

Corollary

Necessary condition for local convergence of all methods is B̃⇤ ⌫ 1

2
⇤̃⇤ ⌫ 0

Proof of corollary: Set ↵=1 in (3).

M. Diehl

Identical Local Convergence of SCP, SCQP, SQCQP

4122/53

Local Convergence of SCP, SCQP, and SQCQP

Theorem 1: Local Convergence of SCP, SCQP, SQCQP [Messerer et al. 2021, ESAIM Survey]

Regard KKT point z⇤ := (w⇤, µ⇤,�⇤) with LICQ and strict complementarity.
Denote the reduced Hessian by ⇤̃⇤, the reduced SCQP Hessian by B̃⇤ (*) and
assume that B̃⇤ � 0. Then

I z⇤ is a fixed point for all three methods SCP, SCQP and SQCQP

I all three methods are well-defined in a neighborhood of z⇤

I their linear contraction rates are equal and given by the smallest ↵ 2 R
that satisfies the linear matrix inequality

� ↵B̃⇤ � ⇤̃⇤ � B̃⇤ � ↵B̃⇤ (3)

(*) ⇤̃⇤ := Z>r2L(w⇤, µ⇤,�⇤)Z and B̃⇤ := Z>BSCQP(w
⇤, µ⇤)Z with Z a

fixed nullspace basis of the Jacobian of active constraints

Corollary

Necessary condition for local convergence of all methods is B̃⇤ ⌫ 1

2
⇤̃⇤ ⌫ 0

Proof of corollary: Set ↵=1 in (3).

M. Diehl

Tutorial Example: Objective and Local Contraction Rate

42

6 ESAIM: PROCEEDINGS AND SURVEYS

Figure 3. Visualization of the objective function and ↵̌(w). Note that ↵̌(w) attains its mean-
ing as local contraction rate only at local minima.

observation: there is also a second, worse, local minimum at wbad ⇡ 3.7, at which holds ↵̌(wbad) � 1. This
means that SCP and GGN would actually strongly diverge from this undesirable local minimum. This is actually
not a coincidence, and later in this paper we dedicate a full section to this behaviour.

2. Methods for smooth constrained NLP

We will now move on to methods that can be applied to NLP of the form

min
w 2 Rn

�0(F0(w))

s.t. �i(Fi(w)) 0, i = 1, . . . , q,

g(w) = 0.,

(16)

composed of only smooth functions, and with �i(Fi(w)) =: fi(w), i = 0, . . . , q.

2.1. Sequential Convex Programming

wk+1 2 arg min
w 2 Rn

�0(F
lin

0
(w;wk))

s.t. �i(F
lin

i (w;wk)) 0, i = 1, . . . , q,

glin(w;wk) = 0

(17)

with fSCP

i (wk;wk+1) := �i(F lin

i (w;wk)) for i = 0, . . . , q.

10 ESAIM: PROCEEDINGS AND SURVEYS

Figure 4. Right: Convergence to local minimum at w⇤
⇡ 0.1.

where we introduced slack variables s 2 RN , and subsumed the model-measurement residual in in Fi(w) =
⌘i � Mi(w). We apply SCP, SCQP and SQCQP to this problem, initializing the schemes at w0 = 0, s0 = 0,
and, in the case of SCQP, µ0 = 1. For the obtained iteration sequences we compute the empirical contraction
rate as

k =
|wk+1 � wk|

|wk � wk�1|
, (33)

(cleaner to define in terms of full primal-dual iterates.) and the theoretical asymptotic rate ↵̌(w⇤) as defined
in (15) (cleaner to actually use LMI (25)). The results are shown in figure 4. Note how the empirical rates
approach the theoretically predicted rate in the final iterations.

3.2. Quadratic Convergence

We transition to an interesting special case via the following example.

Example 3.3. We continue with the just introduced slack reformulation (32). This time we want to investigate
the convergence behavior when varying the Huber parameter �. Recalling that for � ! 0 the pseudo Huber
penalty approaches the L1 norm, we also consider a variation of our example where residuals are penalized by
the L1 norm. This leads us to the problem minw2Rk⌘�M(w)k1, for which the smooth epigraph reformulation
is

minimize
w, s

NX

i=1

s

subject to Fi(w) si i = 1, . . . , N,

�Fi(w) si i = 1, . . . , N.

(34)

We use SCP to solve this problem, as well as (32) for many values of � 2 [10�6, 102]. Note that applying SCP
to (34) actually simplifies to Sequential Linear Programming (SLP) [?]. For each � we compute the theoretical
contraction rate. The results are visualized in figure 5. For approximately � > 1 the contraction rate flatlines at
↵ ⇡ 0.04. This happens when � is so large that all residuals are penalized quadratically, i.e., in a least-squares
fashion. For � ! 1 something much more interesting happens: it seems that ↵ ! 0 as � approaches 0, i.e.,
in the limit we would obtain convergence faster than linear. We therefore turn to a theoretic analysis of this
behavior.

M. Diehl

Desirable Divergence and Mirror Problem [cf. Bock 1987]

43 50/45

Desirable divergence and mirror problem, cf. [Bock 1987]

SCP and GGN do not converge to every local minimum. This can help to avoid
”bad” local minima, as discussed next.

Regard maximum likelihood estimation problem minw �(M(w)� y) with

nonlinear model M : Rn ! RN and measurements y 2 RN . Assume penalty �
is symmetric with �(�z) = �(z) as is the case for symmetric error
distributions. At a solution w⇤, we can generate ”mirror measurements”
ymr := 2M(w⇤)� y obtained by reflecting the residuals.
From a statistical point of view, ymr should be as likely as y.

M. Diehl

SCP divergence minimum unstable under mirroring⇔

44 51/52

SCP Divergence , Minimum unstable under mirroring

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w⇤ of �(M(w)� y) that satisfies SOSC. If the
necessary SCP convergence condition B̃⇤ ⌫ 1

2
⇤̃⇤ does not hold, then w⇤ is a

stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M(w⇤)� ymr = y �M(w⇤) to show
that rfmr(w

⇤) = J(w⇤)>(y �M(w⇤)) = 0 and
r2fmr(w

⇤) = BGGN(w
⇤)� EGGN(w

⇤) = 2BGGN(w
⇤)�r2f(w⇤) 6⌫ 0

M. Diehl

SCP divergence minimum unstable under mirroring⇔

45 51/52

SCP Divergence , Minimum unstable under mirroring

Theorem [Messerer and D., 2019/2020] generalizing [Bock 1987]

Regard a local minimizer w⇤ of �(M(w)� y) that satisfies SOSC. If the
necessary SCP convergence condition B̃⇤ ⌫ 1

2
⇤̃⇤ does not hold, then w⇤ is a

stationary point of the mirror problem but not a local minimizer.

*Sketch of proof (unconstrained): use M(w⇤)� ymr = y �M(w⇤) to show
that rfmr(w

⇤) = J(w⇤)>(y �M(w⇤)) = 0 and
r2fmr(w

⇤) = BGGN(w
⇤)� EGGN(w

⇤) = 2BGGN(w
⇤)�r2f(w⇤) 6⌫ 0

M. Diehl

Tutorial Example and Mirror Problems at Different Local Minima

46

ESAIM: PROCEEDINGS AND SURVEYS 13

Figure 6. Illustration of the mirror problem. The mirrored measurements ⌘̆ are obtained by
mirroring the original measurements ⌘ vertically at the model function.

Before continuing, we rephrase (38) as

min
w 2 Rn,
s 2 RN

�0(s)

s.t. ⌘ �M(w) s,

� (⌘ �M(w)) s,

g(w) = 0,

(40)

i.e., its epigraph reformulation with slack variable s. Note that implicitly we have s � 0 for all feasible points.
This has the advantage that (40) can be smooth even if (38) is non-smooth. Consider, e.g., the L1-norm,
�0(·) := k·k1. For the non-negative reals, s 2 Rn

+
, it holds that �0(s) = s. We can thus simply replace �0(s) by

s to obtain an equivalent smooth NLP. It follows that our convergence analysis from the previous section will
be applicable. The mirror problem of (40) is the epigraph reformulation of (39). The Lagrangian of (40) is

L(z) = L(w, s,�, µ+, µ�) = �0(s) + �>g(w) + µ>
+
(⌘ �M(w)� s) + µ>

� (M(w)� ⌘ � s) (41)

and correspondingly for its mirror problem.

Lemma 4.3. Assume z⇤ = (w⇤, s⇤,�⇤, µ⇤
+
, µ⇤

�) is a KKT point of (40). Then z̆ = (w⇤, s⇤,��⇤, µ⇤
�, µ

⇤
+
) is a

KKT point of its mirror problem at w⇤
and vice versa.

16 ESAIM: PROCEEDINGS AND SURVEYS

Figure 7. Illustration of the objective functions for the mirror problem. The bad local mini-
mum turns into a maximum for the mirror problem.

smooth unconstrained NLP smooth constrained NLP

constrained optimization with non-smooth structure

SCP
SQCQP

SCQP

CGGN
CGN

GGN

GN

SLPS-SDP

S-SOCP

Figure 8. Overview

M. Diehl

Overview

47

• Model Predictive Control - Examples and Optimization Problems

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• + SLP, CGN, SCQP, SQCQP

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality and Exactness

• Mixed Integer Optimal Control
• Problem Statement
• Three Step Algorithm
• Application to Renewable Energy System in Karlsruhe

M. Diehl

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

48

Two Ingredients of Newton-Type Optimization

M. Diehl

The convexity exploiting algorithms presented so far need two ingredients:

1. a good nonlinear model and its linearisation, and
2. convex substructure in objective and constraints

Which of the two is more important for success in data-driven optimization?

49

Two Ingredients of Newton-Type Optimization

M. Diehl

Iterative Learning Control for Lemon-Ball Throwing

50

M. Diehl

Iterative Learning of Ball Throwing with Minimal Energy
Experiments conducted by Katrin Baumgärtner

51

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y 0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y 0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866 1.039 = (uR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 0

plant

model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0
p y

iteration k = 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 10

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

Fig. 2. L2-cost: steps �u, cost and outputs.

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y 0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y 0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866 1.039 = (uR)

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 0

plant

model

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 1

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0

p y

iteration k = 5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
px

0.0

2.5

5.0
p y

iteration k = 10

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

Fig. 2. L2-cost: steps �u, cost and outputs.

• Model maps initial velocity
 to landing position

• Aim: throw ball further than with
minimal initial velocity

• Experiments with “real plant” give pairs
 [shorter distance than predicted]

• We can use to correct the model,
and iteratively obtain by solving the
following optimization problem:

FM(u)
u ∈ ℝ2 y ∈ ℝ

y ≥ 10

(uk, yk)
(uk, yk)

uk+1

37/41

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y 0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

M. Diehl

Iterations of Algorithm and Reduced Problem Visualization

52

VI. ILLUSTRATIVE EXAMPLE

Example 1 (Ball). The actual system is given by

ṗx = vx,

ṗy = vv,

v̇x = �CD

m

q
(vx � wx)2 + (vy � wy)2 (vx � wx) ,

v̇y = �g � CD

m

q
(vx � wx)2 + (vy � wy)2 (vy � wy) ,

with

CD = 0.05, m = 0.5kg, wx = 2m/s, wy = 0.01m/s.

with initial condition

px(0) = 0, py(0) = 0, vx(0) = u1, vy(0) = u2,

where u = (u1, u2) is the control input. The output y is
given by the x-position of the ball at the time when the ball
hits the ground, i.e.

FR(u) = px(TR)

where TR is obtained as the solution of the root-finding
problem py(T) = 0.
As an approximate model, we use the following dynamics:

˙̂px = vx,

˙̂py = vy,

˙̂vx = 0,

˙̂vy = �g,

with initial condition

p̂x(0) = 0, p̂y(0) = 0, v̂x(0) = u1, v̂y(0) = u2,

where u = (u1, u2) is the control input. In this case, the
position of the ball when it hits the ground can be computed
analytically and is given as

FM(u) = p̂x(TM) = TMu1,

where TM = 2u2
g

.

(uR, yR) = arg min
u,y

kukp

s.t. y = dR(u),

10 � y 0,

(uk+1, ŷk+1) = arg min
u,y

kukp

s.t. y = yk � dM(uk) + dM(u),

10 � y 0,

Figure 1 shows the actual trajectories, as well as the trajec-
tories predicted by the model for iterations k = 0, 1, 5, 10,
when using the L2-loss. The algorithm converges to ū after
15 iterations which is illustrated in Figure 2. At ū the sub-
optimality, as well as the upper bound on the suboptimality
defined in Proposition 2 are:

kūk2 � kuRk2 = 0.866 1.039 = (uR)

Fig. 1. L2-cost: Actual trajectories and trajectories predicted by the model
for different iterations.

0 2 4 6 8 10 12 14

0

2

4

st
ep

�
u

0 2 4 6 8 10 12 14

120

140

160

co
st

0 2 4 6 8 10 12 14
timestep k

6

8

10

y

Fig. 2. L2-cost: steps �u, cost and outputs.

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y 0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

M. Diehl

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

53
35/43

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = FR(u) (”reality”):

minimize
u, y

�(u, y)

subject to FR(u)� y = 0,

H(u, y) 0

(4)

ZOO-ILC idea [cf. Schöllig, Volkaert, Zeilinger]: use trial input uk with output
yk and a model FM to obtain new trial input uk+1 from solution of

minimize
u, y

�(u, y)

subject to FM(u)� y = FM(uk)� yk,

H(u, y) 0

(5)

Questions: Does this method converge? What is its loss of optimality?

M. Diehl

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

54
35/43

Zero Order Optimization-based Iterative Learning Control (ZOO-ILC)

Aim: optimization with unknown input-output system y = FR(u) (”reality”):

minimize
u, y

�(u, y)

subject to FR(u)� y = 0,

H(u, y) 0

(4)

ZOO-ILC idea [cf. Schöllig, Volkaert, Zeilinger]: use trial input uk with output
yk and a model FM to obtain new trial input uk+1 from solution of

minimize
u, y

�(u, y)

subject to FM(u)� y = FM(uk)� yk,

H(u, y) 0

(5)

Questions: Does this method converge? What is its loss of optimality?

M. Diehl

Feasibility and Loss of Optimality of ZOO-ILC

55
36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR) �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

Special cases where ZOO-ILC delivers a lossless solution

56

36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR) �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):

2. Model and real Jacobian coincide at solution (rarely the case):

3. Constrained problems where solution is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)

λ̄ = 0

JM(ū) − JR(ū) = 0

uR
uR − ū = 0

M. Diehl

Special cases where ZOO-ILC delivers a lossless solution

57

36/40

Feasibility and Loss of Optimality

Theorem 2 [Baumgärtner et al., in preparation]

For any fixed point (ū, ȳ) of the ZOO-ILC algorithm with multipliers (�̄, µ̄)
holds under mild conditions:

I (ū, ȳ) is feasible for the real problem

I the loss of optimality compared to a real solution (uR, yR) is bounded by:

�(ū, ȳ)� �(uR, yR) �̄> (JM(ū)� JR(ū)) (uR � ū)

Here, the Lagrangian of the model problem is given by

L(u, y,�, µ) = �(u, y) + �>(FM(u)� y � bk) + µ>H(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

ZOO-ILC delivers lossless solution in the following three cases:

1. Tracking ILC with zero residual (standard ILC):

2. Model and real Jacobian coincide at solution (rarely the case):

3. Constrained problems where solution is in vertex of the reduced feasible set:

(if the Jacobian error is small enough, LICQ and strict complementarity hold)

λ̄ = 0

JM(ū) − JR(ū) = 0

uR
uR − ū = 0

M. Diehl

Solutions for - and -norm minimisationL2 L∞

58

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y 0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

suboptimality: (bound)0.874 ≤ 1.377

M. Diehl

Solutions for - and -norm minimisationL2 L∞

59

38/42

Lemon-Ball Throwing Example

minimize
u 2 R2

kuk1

subject to F̃M (u;uk, yk) � 10
(9)

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.
solution in vertex, no loss of optimaliy

0 5 10 15 20
u1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

u
2

F
R
(u

)
=

10

F̂
M
(u; ū, ȳ)

=
10

Fig. 3. L2-cost: Level lines of the cost function as well as feasible set.

Fig. 4. L1-cost: Level lines of the cost function as well as feasible set.

Fig. 5. Level lines of the cost function as well as feasible set.

Fig. 6. Level lines of the cost function as well as feasible set.

37/42

Lemon-Ball Throwing Example

minimize
u 2 R2, y 2 R

kuk22

subject to FM(u)� y = FM(uk)� yk,

10� y 0

(6)

minimize
u 2 R2, y 2 R

kuk22

subject to y = FM(u)� FM(uk) + yk| {z }
=:F̃M (u;uk,yk)

,

y � 10

(7)

minimize
u 2 R2

kuk22

subject to F̃M (u;uk, yk) � 10
(8)

suboptimality: (bound)0.874 ≤ 1.377

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

60

39/43

Time-optimal point-to-point motion of oscillator

minimize
y(·), u(·)

Z TH

0

|y(t)� yref |+ ↵u(t)2 dt

subject to y(t) = FM(t;u) + yk(t)� FM(t;uk),

|u(t)| 1, t 2 [0, TH]

(9)

with TH = 4, ↵ = 10�4, yref = 0.5

Real plant:
with

Model:
with

T2··y + 2Td ·y + y + βy3 = KRu
T = 1, d = 0.5, β = 2, KR = 0.9

T2··y + 2Td ·y + y = KMu
KM = 1

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1

u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

α = 10−4

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

61

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

62

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

Time-Optimal Motion of an oscillator (L1-tracking)

63

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 1

optimal

plant

model

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 2

0 1 2 3 4
t

0.00

0.25

0.50

0.75

y

iteration k = 5

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 13. Oscillator example with large mismatch, � = 2 and L2-cost
term, ↵ = 0.0001: Optimal trajectory, actual trajectory, as well as predicted
trajectory.

0 1 2 3 4
t

�1

0

1

u

iteration k = 1

optimal u

current u

0 1 2 3 4
t

�1

0

1

u

iteration k = 2

0 1 2 3 4
t

�1

0

1
u

iteration k = 5

Fig. 14. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

Fig. 15. Oscillator example with large mismatch, � = 2 and L2-cost term,
↵ = 0.0001.

M. Diehl

When does the ZOO-ILC method converge?

64

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

When does the ZOO-ILC method converge?

65

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

M. Diehl

When does the ZOO-ILC method converge?

66

40/44

Local Convergence Analysis

Theorem 3 (Convergence of ZOO-ILC) [Baumgärtner et al., in preparation]

Regard a fixed point z̄ = (ū, ȳ, �̄, µ̄A) of ZOO-ILC and assume it satisfies
LICQ, SOSC and strict complementarity in the model problem. Then the local
contraction rate is given by the spectral radius ⇢(A) of the matrix

A :=
⇥
Inu 0 0 0

⇤✓@R
@z

(z̄; ū, ȳ)

◆�1

2

664

0
0

JM(ū)� JR(ū)
0

3

775

The ZOO-ILC method converges if ⇢(A) < 1 and diverges if ⇢(A) > 1.

Here, µA are the active constraint multipliers and R(z;u0, y0) is defined by

R(z;u0, y0) :=

2

664

ruLM(u, y,�, µA;u0, y0)
ryLM(u, y,�, µA;u0, y0)
FM(u)� y + y0 � FM(u0)

HA(u, y)

3

775

where the Lagrangian of the model problem is given by

LM(u, y,�, µA;u0, y0) = �(u, y)+�>(FM(u)� y+ y0 �FM(u0))+µ>
AHA(u, y)

and JM(u) and JR(u) are the Jacobians of FM(u) and FR(u).

Contraction rate grows with distance between model and real Jacobian.

M. Diehl

Overview

67

• Model Predictive Control - Examples and Optimization Problems

• Convexity Exploiting Newton-Type Optimization
• Sequential Convex Programming (SCP)
• Generalized Gauss-Newton (GGN)
• + SLP, CGN, SCQP, SQCQP

• Zero-Order Optimization-based Iterative Learning Control
• Tutorial Example
• Bounding the Loss of Optimality and Exactness

• Mixed Integer Optimal Control
• Problem Statement
• Three Step Algorithm
• Application to Renewable Energy System in Karlsruhe

M. Diehl

Mixed Integer Optimal Control Problem with Binary Inputs
(in outer convexified form)

68

Mixed Integer Optimal Control Problem with Binary Inputs b(t)
Formulated in outer convexified form. Can equivalently be formulated with complementarity constraints.

minimize
x(·),u(·),b(·),s(·)

TZ

0

L
�
x, u, b, s

�
dt + M

�
x(T)

�
(2a)

subject to x(0) = x̄0 (2b)

dx

dt
=

nbX

i=1

bi · fi

�
x, u, c

�
,

nbX

i=1

bi(t) = 1, (2c)

bi(t) 2 {0, 1}
h

, 0 bi(t) ? (1 � bi(t)) � 0
i

for i = 1, . . . nb, (2d)

� s + rl r
�
x, u, b, c

�
 ru + s, for t 2

⇥
0, T

⇤
(2e)

(+ additional combinatorial constraints) (2f)

x(t): states, u(t): continuous controls, b(t): binary controls, s(t): slack variables

c(t): time-varying parameters, f : system dynamics, rl r ru: path constraints

Discretize to obtain MINLP. Global solution usually prohibitive (cf. Ruth Misener’s plenary).

NMPC with jumps and discrete actuators Moritz Diehl 44

M. Diehl

NMPC for solar thermal test plant at Karlsruhe University of
Applied Sciences [Bürger et al. 2019]

69

NMPC for a solar thermal test plant
at Karlsruhe University of Applied Sciences, with two discrete actuators

NMPC with jumps and discrete actuators Moritz Diehl 46

M. Diehl

Control-oriented modeling of the solar thermal system

70

Control-oriented modeling
Schematic depiction of the system model

Nonlinear switched system ODE model with nx = 20, nb = 2, nu = 5, and nc = 4,

di↵erentiable in all arguments within the domain of interest

NMPC with jumps and discrete actuators Moritz Diehl 47

M. Diehl

1. Solve Nonlinear Optimal Control Problem with Relaxed Integer Controls,
using direct collocation or multiple shooting and a nonlinear programming
(NLP) solver.

2. Find the “combinatorial integral approximation (CIA) input trajectory that
(a) satisfies all combinatorial constraints and
(b) minimises the integrated difference to the relaxed input trajectory

(pycombina algorithm is 10-100x times faster than standard MILP solver)

3. Fix the integer inputs and reoptimize over all remaining variables by
solving another NLP.

Three Step Decomposition with CIA Norm
[Sager et al., 2011]

71

Numerical results: Three Step CIA Decomposition

(25 CPU sec) (0.02 CPU sec) (18 CPU sec)

NMPC with jumps and discrete actuators Moritz Diehl 48

M. Diehl

Numerical Results: Three Step CIA Algorithm

72

Numerical results: Three Step CIA Decomposition

(25 CPU sec) (0.02 CPU sec) (18 CPU sec)

NMPC with jumps and discrete actuators Moritz Diehl 48

M. Diehl

Experimental Results from Sept 14-17, 2019

73

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

“thesis” — 2020/1/8 — 17:09 — page 143 — #177

CONTINUOUS OPERATION UNDER VARYING AMBIENT CONDITIONS 143

Se
p
14
, 1
3:
00

Se
p
14
, 2
1:
00

Se
p
15
, 0
5:
00

Se
p
15
, 1
3:
00

Se
p
15
, 2
1:
00

Se
p
16
, 0
5:
00

Se
p
16
, 1
3:
00

Se
p
16
, 2
1:
00

Se
p
17
, 0
5:
00

Time

21
22
23
24
25
26

T
em

p
.
(◦
C
)

Tt,r,a,1 Tt,r,a,3 Tt,r,c,1 Tt,r,c,3

0.00
0.25
0.50
0.75
1.00
1.25

S
ol
.
ir
ra
d
.
(k
W

/m
2
)Ifpsc Ivtsc

0.0
0.2
0.4
0.6
0.8
1.0

O
p
er
.
le
ve
l
([
0,
1]
)vppsc pmpsc

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vpssc

ṁo,hts,b

ṁssc

ṁi,hts,b

ṁac,ht

0

1

A
C
M

st
at
u
s
({
0,
1}
)bacm bfc bec

0.00
0.25
0.50
0.75
1.00

O
p
er
.
le
ve
l
([
0,
1]
)vplc

9
13
17
21
25
29
33

T
em

p
.
(◦
C
)

Tamb

15
30
45
60
75
90
105

T
em

p
.
(◦
C
)

Tfpsc Tvtsc

40
50
60
70
80
90

T
em

p
.
(◦
C
)

Tht,1 Tht,2 Tht,3 Tht,4

10
12
14
16
18
20
22
24

T
em

p
.
(◦
C
)

Tlt,1 Tlt,2 Tfcu,w

Figure 6.5: Temperature measurements and control actions for the system
operated using mixed-integer nonlinear MPC from September 14, 2019, 06:00
to September 17, 2019, 06:00.

-- Draft version, for internal use only --

Every 2 minutes, a new nonlinear mixed integer optimal control problem is
solved, using a real-time algorithm based on CasADi, IPOPT [Wächter and
Biegler 2006], and Pycombina [Bürger et al, 2019], an implementation of
the combinatorial integral approximation (CIA) method [Sager et al 2011].

M. Diehl

 Alternative to CIA Decomposition: Gauss-Newton based MIQP
 [Bürger et al., in preparation]

74

Alternative to CIA Decomposition: Gauss-Newton based MIQP
[Bürger et al., submitted to CDC 2021]

I Derive convex Gauss-Newton-type approximation of original
MINLP from linearization at relaxed MINLP solution.

I Solution of resulting MIQP can yield improved integer solution
in terms of objective and feasibility of the original MINLP.

I MIQP is equivalent to minimization of a distance function that
is a first order accurate approximation of the true objective.

�0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
y

0

1

2

3

J
(y

)

JNLP(y)

JCIA(y; y�)

JGN(y; y�, z�)

Fig. 1. Comparison of JNLP(y) to JCIA(y; y�) and JGN(y; y�, z�)
for given values y � [�0.2, 1.2] for MINLP (36) with integer constraints
dropped. The value of JNLP(y��

GN) is indicated by the symbol •, the value
of JNLP(y��

CIA) by the symbol �.

approximation yields a significantly better approximation
around the optimal integer solution y

� = 0 and it would
deliver the optimal solution in step S2 in contrast to CIA.
An interesting observation is that JGN and JNLP share the
same tangents at y

⇤.

VI. OPTIMAL CONTROL EXAMPLE

In this section, potential advantages of the proposed ap-
proach for use within mixed-integer optimal control applica-
tions are exemplified within a numerical example, cf. [12].

A. Setup of the numerical example

We regard a simple MIOCP of the form (13) for a
nonlinear and unstable system with one state x 2 R and
one binary control b 2 {0, 1}. The continuous time system
is described by

ẋ = x
3 � b (37)

and transformed to a discrete time system

x
+ = f(x, b) (38)

by using one Runge-Kutta (RK)-4 step with step length h =
0.05. The aim is to track a reference xref = 0.7 starting from
the initial value x0 = 0.8 on a horizon of length N = 30,
resulting in the following MINLP.

min
x,b

1

2

NX

k=0

(x(k) � xref)
2 (39a)

s. t. x(0) = x0, (39b)
x(k + 1) = f(x(k), b(k)),

k = 0, . . . , N � 1,
(39c)

b 2 P \ ZN
. (39d)

The combinatorial constraint set P imposes a minimum
uptime constraint that requires that b remains active for at

Fig. 2. Relaxed and binary feasible solution for the CIA approach.

least three consecutive time steps, i.e., we have

P = {b 2 [0, 1]N |
b(k) � b(k � 1) � b(k � 2),

b(k) � b(k � 1) � b(k � 3),

k = 0, . . . , N � 1}.

(40)

The required previous values b(�1), b(�2), and b(�3) are
all set to zero. Further details on minimum dwell time
constraints in the MIOCP context can be found in [8]. The
problem is solved using three different approaches:

CIA – decomposition algorithm using the CIA-MILP,

GN – decomposition algorithm using the GN-MIQP,

exact – a branch-and-bound style simulation procedure
for finding the globally optimal solution.

The MINLP is implemented using CasADi and the NLP
stage in step S1 of the decomposition algorithm is solved
using Ipopt. The CIA problem is solved using a tailored
branch-and-bound algorithm available in pycombina [13], the
GN-MIQP is solved using Gurobi [21]. Due to the absence of
continuous controls, step S3 for this example just amounts to
a system simulation. The branch-and-bound style simulation
procedure for the exact approach is a custom implementation
in Python.

B. Results

The objective value of the relaxed solution is given by
1
2kF (x⇤

, b
⇤)k2

2 = 8.97 · 10�3. The objective values for the
CIA approach is 1

2kF (x⇤⇤⇤
CIA, b

⇤⇤
CIA)k2

2 = 1.32 · 10�1 and the
objective value for the GN approach is 1

2kF (x⇤⇤⇤
GN, b

⇤⇤
GN)k2

2 =
2.07·10�2. The true optimal cost found by the exact approach
is given by 1

2kF (x�
, b

�)k2
2 = 2.07 ·10�2. These results show

that for this setup, the GN approach was able to achieve an
improved solution compared to the CIA approach in terms of
the MINLP objective. The solution obtained by GN here even
is a globally optimal solution since the obtained objective
value corresponds to the result of the exact approach.

The optimized state and control obtained by approaches
CIA and GN are given in Fig. 2 and Fig. 3, respectively. The
reference value xref for the state is indicated as dashed grey

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 611 submitted to 2021 60th IEEE Conference on
Decision and Control (CDC). Received March 25, 2021.

Original MINLP

min
y,z

1

2
kF1(y, z)k2

2 + F2(y, z)

s. t. G(y, z) = 0

H(y, z) 0

y 2 Zny

GN-MIQP from linearization at (y⇤
, z

⇤)

min
y,z

1

2
kF1,L(y, z; ȳ, z

⇤)k2
2 + F2,L(y, z; y⇤

, z
⇤)

s. t. GL(y, z; y⇤
, z

⇤) = 0

HL(y, z; y⇤
, z

⇤) 0

y 2 Zny

NMPC with jumps and discrete actuators Moritz Diehl 49

M. Diehl

Numerical results: Three Step GN-MIQP Decomposition

75

Numerical results: Three Step GN-MIQP Decomposition

(25 CPU sec) (130 CPU sec) (15 CPU sec)

NMPC with jumps and discrete actuators Moritz Diehl 50

M. Diehl

Comparison of CIA and GN-MIQP Solution

76

Comparison of CIA and GN-MIQP Solution

(43 CPU sec) (170 CPU sec)

GN-MIQP delivers significant feasibility improvements, at the expense of increased computational cost.

NMPC with jumps and discrete actuators Moritz Diehl 51

M. Diehl

Summary and Recent Software Developments

77

• Exploiting convex structures in nonlinear problems is key for reliable and fast nonlinear MPC
algorithms.

• Sequential Convex Programming (SCP) and its variants converge linearly. They avoid “bad”
minimizers (where the nonlinearity dominates the convex substructure).

• Zero-Order Optimization allows us to design theoretically solid Iterative Learning Control
algorithms. They can recover an optimal solution in special cases.

• Mixed Integer Optimal Control can be addressed by Three-Step-Decomposition method with
classical CIA or novel Gauss-Newton MIQP variant

• Latest open-source (BSD 2) software developments from the team are:
• BLASFEO: Basic Linear Algebra Subroutines For Embedded Optimization (Frison et al.), targeting dense

matrices from 10x10 to 400x400
• HPIPM: interior point QP and QCQP solver for block-sparse problems with optimal control and tree structure,

based on BLASFEO (Frison et al., IFAC 2020, ECC 2022)
• acados: Nonlinear MPC and MHE library implementing SCP type algorithms, using HPIPM and CasADi, with

user interfaces from MATLAB and Python (Verschueren, Kouzoupis, Frison, Frey et al., successor of
ACADO)

• pycombina: fast solution of a special class of mixed integer linear programs arising in the combinatorial
integral approximation (CIA) method for nonlinear mixed integer optimal control (Bürger et al., IFAC 2020)

• NOS-NOC: Non-Smooth Systems Numerical Optimal Control package based on MATLAB, CasADi, IPOPT
(Nurkanovic et al., CDC 2022, submitted)

M. Diehl

Thank you

78

